

Introduction Dilepton Sample

Dielectron Production in Au+Au Collisions at $\sqrt{s_{NN}} = 39$ GeV at STAR

Patrick Huck for the STAR Collaboration CPOD Workshop, CCNU Wuhan (11/10/2011)

Introduction
 Dilepton Sample
 e⁺e⁻ Signal
 Simulation Prep
 Summary

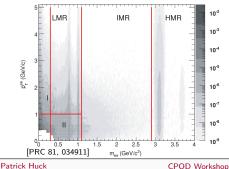
DAAD

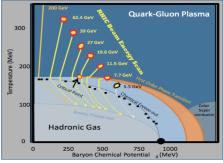
Deutscher Akademischer Austausch Dienst German Academic Exchange Service ing the Phase Diagram of Nuclear Matter

e⁺e⁻ Signal

Mapping the Phase Diagram of Nuclear Matter

Dilepton Sample


 Beam Energy Scan: Identify QGP properties & explore QCD phases over wide energy range


Introduction

- usual means are R_{CP} or v_2 of hadrons

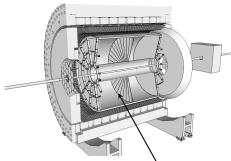
STAR 🕁

- dielectrons can serve as an alternate probe
 - → no strong interaction while traveling through matter
 - → probe for the medium created in the early stage of a HI collision

Simulation Prep

Motivation

Summary


STAR

[arXiv:1007.2613]

- compare to models by simulation of known dielectron sources (cocktail)
- LMR: vector meson modifications
- IMR: thermal radiation from deconfined phase \rightarrow initial QGP temperature
- p_T-dependence of IMR continuum

STAR Detector

Time-Of-Flight Det.

Large Acceptance $|\eta| < 0.9 \quad 0 < \phi < 2\pi$ Enables pure electron identification due to effective hadron rejection $\pi, K : p_T < 1.6 \text{ GeV}/c$ $p : p_T < 3.0 \text{ GeV}/c$

Time Projection Chamber

Large Acceptance

 $|\eta| < 1$ $0 < \phi < 2\pi$ *Tracking*: Momentum & Trajectory *PID*: Ionization Energy Loss (dE/dx) $\pi, K : p_T < 0.7 \text{ GeV}/c$ $p : p_T < 1.0 \text{ GeV}/c$

Run10 BES Data

- unique capabilities
- low material budget
- high statistics
- favorable for the physics of rare probes

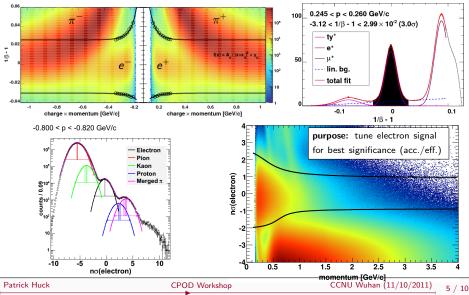
Patrick Huck

e

Datasets & Electron Candidates

Run10 Dataset for $\sqrt{s_{NN}} = 39 \ GeV$ best suitable for the analysis of rare dielectrons

	\sqrt{s}	\sqrt{s} usable MB events		Event Selection		ć	analyzed Evts		Nr. of Runs	
	39 GeV 155.8 M		5.8 M	$\left V_{z}\right < 30 \ cm \ V_{r} < 2 \ cm$:m	115.1 M		560	
Т	rack Sele	ction			4	0.1%	0.1%	0.0%	0.0%	0.0%
$p_{T} > 0.2~GeV/c$ eta > 0			track through TPC TOF information avail.		e ⁺ / event 5 5	0.3%	0.3%	0.1%	0.0%	0.0%
$ert \eta ert <$ 0.9 $e^+/e^-~ m dca < 3 m cm$		TOF coverage primary tracks		1.9%		1.4%	0.5%	0.1%	0.0%	
nHitsdEdx > 14 nHitsFit > 14		TPC dEdx hits used TPC helix fit points		υ # 1	10.2%	5.0%	1.4%	0.3%	0.1%	
T	PC ratio >	> 0.52	suppress s	plit tracks	0	64.9%	10.6%	2.1%	0.4%	0.1%
	only ever	•		0 vt = 0.2 vt = 0.2		2 e / ev	3 ent _{#e⁺e⁻/}	4 evt = 0.18		


Introduction Dilepton Sample

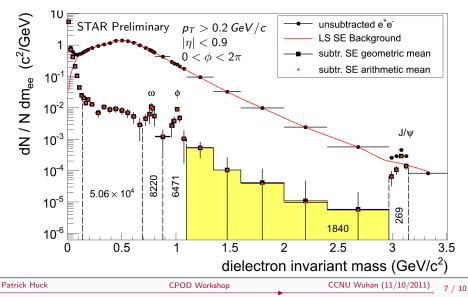
e⁺e⁻ Signal Simulation Prep

Datasets & Track Selection ePID – TOF

Summary

Electron Identification using TOF & TPC

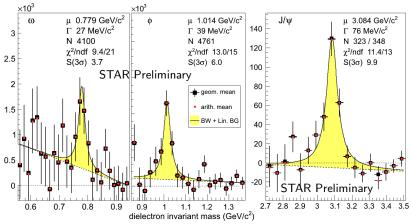
Background Subtraction Methods


Like Sign Same Event incl. acceptance correction (LS SE) $N_{\pm\pm} = 2\sqrt{N_{++}N_{--}} \cdot ME_{+-} / 2\sqrt{ME_{++}ME_{--}}$ Geometric Mean $N_{++} = a(N_{++} + N_{--}) \cdot ME_{+-} / b(ME_{++} + ME_{--})$ Arithmetic Mean (a,b correct for the respective difference to the geometric mean) $N_i, ME_i = \#$ counts in each bin i $(m_{ee}, [p_T])$ [PRC 81, 034911] Acceptance Correction Factor 1.15 S/N Ratic 10² b = 0.998951.1 10 1.05 10⁻¹ 0.95 10-2 geometric mean 0.9 × arithmetic mean 10⁻³ 0.5 15 25 35 05 15 2.5 35 2 3 3 dielectron invariant mass (GeV/c²) dielectron invariant mass (GeV/c²) Patrick Huck CPOD Workshop CCNU Wuhan (11/10/2011)

6 / 10

Raw Invariant Mass Spectra

Introduction

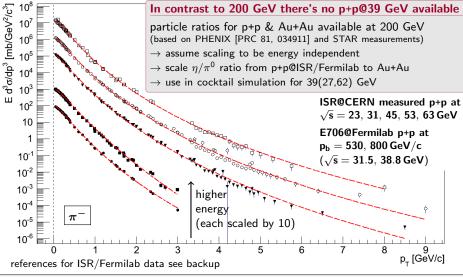

Introduction Dilepton Sample

Signal

Simulation Prep

Linear Scale

BG Subtraction Comparison on Linear Scale



Vector meson resonances are reconstructed with good or even high significance!

Introduction Dilepton Sample


Bypassing the missing p+p Measurement

Introduction 📕 Dilepton S

Bypassing the missing p+p Measurement

Summary & Outlook

Dilepton Sample e⁺e⁻ Signal Simulation Prep

Summary

- First study of dielectron production at BES energies in STAR
- Raw invariant mass spectrum presented up to $M_{ee} < 3.5~GeV/c^2$
- Prominent vector meson signals reconstructed ($\omega,\phi,J/\psi)$
- Data compilation for cocktail simulation at BES energies
- Continuum yield makes study of its p_T -dependence feasible

Outlook

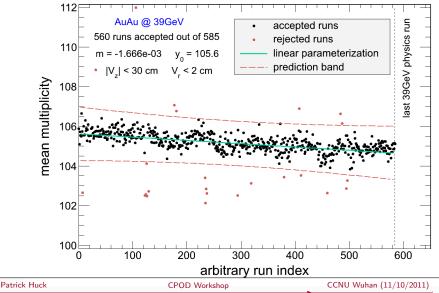
- Equivalent analyses planned for 62 & 27 GeV

Introduction

- Single electron embedding & efficiency correction ongoing
- Input for simulation & cocktail generation need further investigation
- Finalization of Mixed Event subtraction ongoing

Summar

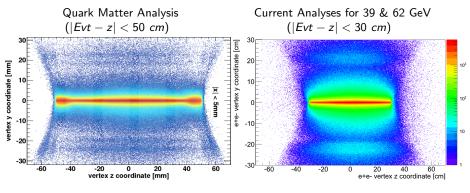
BACKUP


-				
Ра	tric	k I	luc	k –

STAR 🖈

12 / 16

Datasets & Track Selection – Bad Runs



Dielectron Global Vertex & Pair Cuts

Introduction

Dilepton Sample

Reconstructed e^+e^- vertex using global helices to reduce conversion background and understand material budget.

- kept cut on e^+e^- g-vertex: $r < 10 \ cm \ |z| < 38 \ cm$

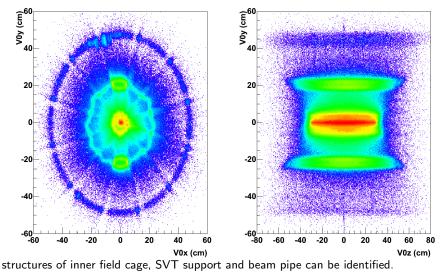
- e^+e^- dca < 2 cm

STAR 🕁

no $\delta(\phi_V)$ cut for now (less conversion bg-rejection)

e⁺e⁻ Signal Simulation Prep

Summary



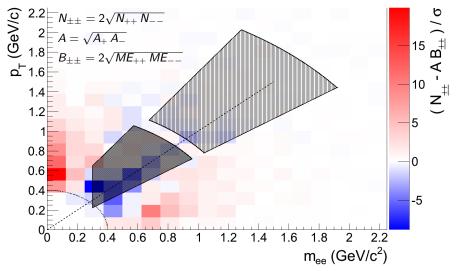
Conversion Pair Vertizes for global inv. Mass Cut

Dilepton Sample

e⁺e⁻ Signal Simulation Prep

Summary

S/N Ratio, ME Normalization Region, 1D Ratio


Dilepton Sample

e⁺e⁻ Signal

Simulation Prep

Summar

Introduction

Summar

ISR/Fermilab Data for Particle Ratios in BES

ISR@CERN measured p+p at $\sqrt{s} = 23, 31, 45, 53, 63 \,\text{GeV}$

STAR 🕁

Phys. Lett. B 194 (1987) 4 Nucl. Phys. B 209 (1982) 309-320 Nucl. Phys. B 158 (1979) 1-10 Phys. Lett. B 79 (1978) Nucl. Phys. B 124 (1977) 1-11 Phys. Lett. B 64 (1976) Nucl. Phys. B 116 (1976) 77-98 Phys. Rev. Lett 40 (1978) 684 Phys. Rev. Lett. 38 (1977) 112 Nucl. Phys. B 106 (1976) 1-30 Nucl. Phys. B 100 (1975) 237-290 Nucl. Phys. B 98 (1975) 49-72 Phys. Lett. B 55 (1975) 232 Nucl. Phys. B 87 (1975) 19-40 Phys. Lett. B 47 (1973) 75 Phys. Lett. B 47 (1973) 275 Phys. Lett. B 46 (1973) 471 Phys. Rev. Lett. 31 (1973) 413 Phys. Lett. 44B (1973) 521

E706@Fermilab p+p at $E_{kin} = 530$, 800 GeV/c. Corresponds to $\sqrt{s} = 31.5$, $38.8 \, \text{GeV}!$

Phys. Rev. D 68 (2003) 052001

 \Rightarrow ca. 90 datasets for π , K, η with $|\eta| < 1$ (mostly small windows around midrapidity)

Levy Fit Function [PRC 71. 064902] best description over entire p_T range $\frac{1}{2\pi n_T} \frac{d^2 N}{dy \, dn_T} = \frac{dN}{dy} \frac{(n-1)(n-2)}{2\pi n T (nT+m_0(n-2))} \left(1 + \frac{\sqrt{p_T^2 + m_0^2 - m_0}}{nT}\right)^{-n}$

all rapidities plotted independently

 \rightarrow average each energy over rapidity range!