# Evaluation of the Underlying Event in pp Collisions at $\sqrt{s}$ =200 GeV at STAR



- What is the Underlying Event?
- Techniques for measuring the UE at STAR
- STAR jet trigger & reconstruction
- STAR Underlying Event distributions
  - Comparisons with results from CDF

Grant Webb for the STAR Collaboration



APS Meeting, Denver, Colorado, May 3, 2009



## What is the Underlying Event (UE)?

Short answer: Everything except the hard partonic 2-2 scattering.

The UE includes :

- Initial and final state radiation (ISR/FSR)
- Beam remnant
  interactions
- Multiple Partonic Interactions (MPI)



The motivation for this analysis was driven by the need to estimate from data the contribution of the UE to the reconstructed jet energy scale. Focus on isolating the beam remnant component of the UE because the NLO calculations we compare our inclusive jet measurements to include initial and final radiation.

#### This analysis follows closely the framework developed by Rick Field at CDF.

#### How can we measure the UE?

1st look at Back-to-Back Di-Jet Events in which the jet energies are relatively close so as to minimize radiation in transverse region.



#### **Proton-Proton Collisions at RHIC**





Like all most energy detectors, STAR is composed of many subdetector systems. This talk will review only those currently used in jet triggering and reconstruction.













- i.  $P^{\mu}$  of TPC track, EMC tower OR particle used as seed for cluster formation
- ii. Cluster  $P^{\mu}$  around seed inside Jet Cone Radius = 0.7
- iii. Look for additional stable clusters at "midpoint" between two clusters
- iv. Merge jets if Energy overlap > 50%
- v. Sum of  $P^{\mu}$  in each stable cluster forms jet
- vi. Require Jet pT > 5 GeV
- vii. Same algorithm used for DATA and SIMULATION
- viii. Use CDF Tune for PYTHIA and GEANT for STAR Detector Simulation

#### **Jetfinder Parameters and Data Cuts**



Data Sample = 2006  $\sqrt{s}$ =200 GeV



Jet Patch Trigger is defined by a minbias condition plus 400 localized towers  $(\Delta \eta = \Delta \phi = 1)$ above threshold.

All Simulations are PYTHIA CDF Tune A + STAR GEANT Package

### **Cuts on Jet Distributions**





#### Mean Charged Track p<sub>T</sub>

| UE   | <data></data> | <pythia></pythia> |
|------|---------------|-------------------|
| CDF  | 1.1           | 1.0               |
| STAR | 0.55          | 0.55              |



L.A. Cruz, "Using MAX/MIN transverse regions to study the underlying event in run 2at the Tevatron" UMI-31-88071, 2005.



Maximum Jet pT (GeV)

#### **Charged Track Multiplicity Density**

|      | <data></data> | <pythia></pythia> |
|------|---------------|-------------------|
| CDF  | 0.5           | 0.5               |
| STAR | 0.7           | 0.6               |



L.A. Cruz, "Using MAX/MIN transverse regions to study the underlying event in run 2at the Tevatron" UMI-31-88071, 2005.



#### Max Charged Track p<sub>T</sub>

| UE   | <data></data> | <pythia></pythia> |
|------|---------------|-------------------|
| CDF  | 1.2           | 1.0               |
| STAR | 0.65          | 0.6               |



L.A. Cruz, "Using MAX/MIN transverse regions to study the underlying event in run 2at the Tevatron" UMI-31-88071, 2005.



#### Charged Track P<sub>T</sub>Sum Density

| UE   | <data></data> | <pythia></pythia> |
|------|---------------|-------------------|
| CDF  | 0.6           | 0.55              |
| STAR | 0.37          | 0.30              |







Maximum Jet pT (GeV)

#### Tower E<sub>T</sub> Scaler Sum Density



L.A. Cruz, "Using MAX/MIN transverse regions to study the underlying event in run 2at the Tevatron" UMI-31-88071, 2005.

## Conclusions

- I. The Underlying Event at RHIC appears to be independent of jet pT and decoupled from hard interaction
- II. CDF Tune A provides an excellent description of the UE for proton collisions at  $\sqrt{s}$  =200 GeV
- III. Agreement between data and simulation is fair in the toward in away regions. In general simulations over-predict data with the exception of multiplicity.
- IV. Underlying Event distributions are generally smaller than those at CDF. Charged particle multiplicities are the exception, but this may be due to the 0.2 (STAR) versus 0.5 GeV (CDF) pT cut-off. The charged/neutral scaler pT/eT sum density is 0.37/0.3 GeV.
- V. If the UE is isotropic and the jets are 50% neutral (due to triggering) for a cone jet with R=0.7 the UE contributes ~0.5 GeV.
- VI. Further studies with tower and track multiplicities set at CDF values are in the works!