Anomalous centrality variation of minijet angular correlations in Au-Au collisions at 62 and 200 GeV from STAR

- Electronics Platforms

> Forward Time Projection Chamber Michael Daugherity

University of Texas at Austin for the STAR Collaboration

Silicon Vertex

rackei

alorimeter

Magnet

Coils

Overview

- We report a survey of minimum-bias two-particle correlations in Au+Au collisions
- These are sensitive to *minijets*, elliptic flow, resonances, HBT, etc. allowing a novel comparison of correlation amplitudes and ranges

minijet: Same-side jet-like correlations with *no trigger particle*

- Each correlation source has a unique distribution on relative (η,φ) making decomposition possible
- We observe a surprising trend in *minijet correlations*

Correlation Measure

We use the correlation definition $Corr(x, y) = \frac{Cov(x, y)}{\sqrt{\sigma \sigma}}$

Covariance = object - uncorrelated reference (*mixed-event pairs*)

The denominator provides **per-particle** normalization:

- Correlations are directly comparable *regardless of event multiplicity*
- This is done with *all possible pairs*
- No trigger particle is specified.

J of Phys: Conf **Proton+Proton Components** 27 (2005) 98

HBT peak at origin, LS pairs

M. Daugherity, STAR Collaboration

Fit Function (in 5 Easy Pieces)

Note: from this point on we'll include entire momentum range instead of using soft/hard cuts

M. Daugherity, STAR Collaboration

η_^

 φ_{Δ}

200 GeV Data

Analyzed 1.2M minbias 200 GeV Au+Au events, and 13M 62 GeV minbias events (not shown) Included all tracks with $p_T > 0.15 \text{ GeV/c}$, $|\eta| < 1$, full ϕ

note: 38-46% not shown

We see the evolution of correlation structures from peripheral to central Au+Au

200 GeV Model

Fit model

200 GeV Residual

Fit residual = data - model

We have a good fit with the *simplest possible* fit function. Other than adding the $cos(2\phi_{\Delta})$ quadrupole term, no other modification was necessary.

Quadrupole Component

Instead of removing a *background*, we can make a measurement

The η-dependence of correlations separates quadrupole from other components

Minijet Same-Side Peak

Observations

- Amplitude and η widths start small and experience a sharp transition
- Transition occurs at ~55% centrality at 200 GeV, is more central (~40%) for 62
- φ width has a very different centrality dependence

Binary Scaling

Kharzeev and Nardi model

width are unexpected

Deviations from binary scaling represent new physics unique to heavy ion collisions

HIJING Minijets

HIJING 1.382 default parameters, 200 GeV, quench off Quench on causes slight amplitude *decrease*

The observed minijets correlation is actually *far greater* than predicted by HIJING (factor of 4)

Consistency Check

Does interaction between same-side peak and $cos(\phi_{\Delta})$ terms cause the transition?

Transition

Does the transition from narrow to broad η_{Δ} occur quickly or slowly?

data - fit (except same-side peak)

The transition occurs quickly

Scaling

What is the best way to compare different energies? Does the transition scale?

Peripheral bins are compressed.

Depends *strongly* on formation time (used 1 fm/c), difficult to compare energies.

Yield Estimates

Kharzeev and Nardi two-component model (PLB 507 (2001) 121)

"Hard" scattering fraction = (hard) / (soft + hard) = $\frac{xv}{1+x(v-1)}$

In 200 GeV central Au+Au, $x \sim 0.1$ and $v \sim 6$.

Estimate of total yield fraction = $0.6 / 1.5 \sim 1/3$

Correlations from this analysis

Units: # correlated pairs per particle # pairs = (N_{ch}) * (Peak Volume)

> 7,000 pairs in central collisions

Pair combinatorics require estimate of average number of structures per event to extract yield with *more structures giving greater yield*.

 Assuming number of structures follows binary collision scaling gives *yield fraction of 32%* Peak

1/2 binary scaling gives 23%, 1/10 gives 10%

This correlation represents a significant fraction of the total yield.

See also T. Trainor, arXiv:0710.4504, accepted to J Mod Phys E M. Daugherity, STAR Collaboration

Summary

We measure 2D angular autocorrelations on (η, φ) to study minijets in Au+Au collisions and make two primary observations:

Transition

• Minijet correlations follow binary scaling in peripheral Au+Au collisions and deviate at a *sharp transition point*

• The transition points for 62 and 200 GeV occur at about the same value of transverse particle density

Yield

• Beyond the transition point the peak amplitude and η width *increase dramatically*

• The same-side correlations include a *large number* of hadrons, estimated at *up to ~1/3 of the particle yield* in central Au+Au collisions