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Abstract

The STAR experiment investigates the formation of the Quark Gluon Plasma via the
heavy ion collisions taking place at the Relativistic Heavy Ion Collider (RHIC) situated
at Brookhaven National Laboratory (BNL), Upton, NY. The production of charm
quark (in cc pairs) occurs in the early stages of the heavy ion collisions dominantly
via gluon fusion gg — c¢. Due to the fact that the yield of charm is affected by the
conditions of the early stages of the collision, the measurement of the charm production
provides a useful tool for description of the initial stage that took place. One of
the most important findings of the experiments at RHIC was the discovery of the
anomalous quenching of jets when passing through the hot and dense matter build in
nucleus nucleus collisions. Heavy quarks (charm C' and beauty B together) measured
through non photonic electron yields in heavy ion reactions at /s, = 200 GeV at
RHIC, exhibit a larger suppression than expected from the theoretical considerations.
In order to comprehend this puzzle and understand better the flavor dependence of
the jet quenching, the separation of charm and beauty contributions as well as the
measurement of their quenching is necessary. In the current work we investigate the
D° yield in various datasets (Cu+Cu, Au+Au, d+Au and p+p) at /s, = 200 GeV.
For the Cu+Cu and Au+Au (run VII) for which the silicon strip detector of STAR
has been used for data taking, a microvertexing technique was applied in the analysis,
allowing the topological reconstruction of the D° charmed meson through its secondary
vertex reconstruction. The Silicon Strip Detector (SSD) was first deployed in the year
2005 during the Cu+Cu at /s, = 200 GeV collisions, allowing the enhancement of
the tracking capabilities by providing a connection between reconstructed tracks in
the TPC and SVT (Silicon Vertex Tracker) points. It was observed that the detector
loses a significant percentage of hits of the tracks recorded by the TPC. As a result
the overall tracking reconstruction efficiency drops. A novel cluster finder method is
proposed as a technical part of this thesis by looking for clusters independently on
the p and n sides of the SSD. This study was performed on data taken from run VII.
The new developments achieved in this thesis concern the successful application of
the microvertexing techniques in the heavy ion environment, the extraction of the D°
signal in the heavy ion collisions using these techniques through the study of e-D°
correlations in p+p, Cu+Cu and Au+Au collisions.
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Outline

In Chapter 1, (p. 1), we present a brief introduction to the theory of nuclear inter-
actions, the theoretical predictions for the existence of the Quark Gluon Plasma, and
the experimental observables of heavy-ion collisions. An introduction to to the Heavy
Flavor Physics is also presented, along with the theoretical motivation for the e—D°
azimuthal correlations. In the latter method explication, it is also described how the
experimental disentaglement of the contribution of charm and beauty during heavy ion
collisions, is attained.

In Chapter 2, (p. 23) we carry on with a description of the experimental apparatus,
namely the relativistic heavy ion collider (RHIC), along with the four experimental
areas: PHOBOS, PHENIX, BRAHMS and STAR. The latter will be thoroughly pre-
sented and the various subsystems along with the future upgrades will be discussed as
well. A short description of the Silicon Strip Detector (SSD) is also given along with
its important role in the amelioration of the tracking of STAR.

In Chapter 3, (p. 61) we describe the analysis methodology that is applied on
to the various datasets. In particular, the general applicable event cuts as well as
the Quality Assurance (QA) cuts applied to the tracks, are also discussed. The D°
invariant mass reconstruction method is presented, and the various techniques for the
background subtraction are also discussed.

In Chapter 4, (p. 83) we describe the microvertexing technique that is applied in
the Cu+Cu and Au+Au datasets, exploiting the better tracking capabilities offered by
the STAR Silicon Detectors (SVT and SSD).

In Chapter 5, (p. 97) a Monte Carlo study on the microvertexing technique is
presented, allowing to perform a test on the code concerning the functionality and QA.
In the final sections of the Chapter 5, a comparison is being presented, between data
(Cu+Cu at /5. = 200 GeV) and MC having as a goal the optimization of cuts that
will be used for the topological reconstruction of the D°.

Having taken into account the values of the optimized microvertexing cuts extracted
by the analysis discussed in Chapter 4, the results on the Cu-+Cu dataset are presented
in Chapter 6, (p. 147).

We continue in Chapter 7 (p. 159) by presenting the results in the p+p dataset
at /s = 200 GeV(run VI). In addition, in Chapter 8 (p. 165) we discuss the results

XXVii
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of Au+Au dataset at /s, = 200 GeV (run VII), obtained with the e-D° correlation
technique as well as by applying the microvertexing technique.

Finally in Chapter 9 (p. 171) we discuss the results in the p+p and d+Au dataset at
/s = 200GeV of the year 2008. Concerning the technical part of the work, in Chap-
ter 10, (p. 179) it is presented a new cluster finder method for the Silicon Strip Detector.
It is also discussed the current cluster finder, and a comparison between these two meth-
ods is performed. The data used for this study is from Au+Au at /5. = 200 GeV (run
VII). A conclusion of the work is drawn in Chapter 11 (p. 187), summarizing the results
and the main aspects of the work.



Chapter

Theoretical Introduction

The main focus of the current chapter is the theoretical introduction on the nuclear strong
force along with the theoretical predictions for the existence of the Quark-Gluon Plasma.
Some elements of the observable variables that are used in the experimental nuclear physics
are also presented. The last paragraphs of the chapter are dedicated to the description of
the charm formation and its important role in the study of the heavy ion collisions. In the
conclusion of the chapter, it is also presented the theoretical motivation background for the
e-D° azimuthal correlation analysis.

1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory that describes the strong interaction
exerted among the elementary constituents of the nuclear matter, the quarks. The
force carriers are called gluons and the fundamental aspect of this theory is that the
mediators can interact among them, resulting in 3 or 4 gluon interaction vertices as can
be seen in Figure 1.1. It was the discovery of the A™" baryon that led to the introduc-
tion of the color as a quantum number in order for the wave-function of the particle
to be anti-symmetric, obeying to the Fermi-Dirac statistics. The specific baryon has a
total spin of J = % and can be obtained by combining 3 spin-up (J, = %) u quarks.
Therefore the total spin of the system hence can be written: J = % (uT ul utl). Since
the wave function was symmetric in space, flavor and spin, the introduction of color,
solved this problem, since it was imposed that any permutation in color results in an
anti-symmetric wavefunction ug T ug T up 7.

A quark (¢) can obtain one of the three colors, viz. red, green and blue, (RGB).
The antiparticle, denoted by (g), can obtain the anti-colors expressed as cyan, magenta
and yellow (or anti-red, anti-green and anti-blue RGB). Gluons carry always a pair of
color and anti-color. The confined states of quarks are called hadrons and are colorless,
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(white) entities, composed in such a way of quarks and anti-quarks that the overall color
contribution is naught.

o
S5 ggg

FiG. 1.1: Sketch depicting the interaction of 3 and 4 gluons, showing the exchange (flow)
of color.

1.2 The QCD Lagrangian

The Lagrangian of the QCD is written:

. — ] i 1 «a v
Loco =1 Y q"(Du)isa) — Y msed'qsi — 1GwGa (1.1)
i i

with the indices 7, j referring to the color, f to the quark flavor and p, v are the Lorentz
indices. Also by ¢ we define the quark spinor field of dimension 12 (color ® Dirac).
The covariant derivative (D,,);;, reflecting the local gauge invariance, is expressed by

the term (D,);; = 0;;0, — igs Y /\2” Al where \{; are the Gell-Mann matrices in the

SU(3) flavor representation. Finally the interaction between the gluons is described by
the term: G, = 0,AS — BVAZ‘ + g fabcAZAf,, where AZ refers to the gluon field and
fave are the fully anti-symmetric, structure constants. As mentioned above, for each N
quark flavor there exist three corresponding colors. In other words for every quark it is
assigned a triplet of the SU(3) color group. Unlike SU(N) flavor symmetry, the SU(3)

color symmetry is expected to be conserved. On the other hand the gluons come in
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32 — 1 = 8 different colors, or else said in a SU(3) color octet:
RG, RB, GR, GB, BR, BG,

\/;RR_ GG), \/g(RRJrGG— 2BB)

Concerning the color singlet

1" _ _
‘/5 (RR+ GG+ BDB)
it cannot be the mediator between the color charges, since there is no color than can
be carried.

1.2.1 The Color Factors

The coupling of the interaction between two colors via a gluon exchange is %clc% with
c1 and ¢y let be the color coefficients in the vertices of the interaction. By convention
the quantity expressed in (1.2) is called color factor.

1
Cr = 5\0102| (1.2)

1.3 The Running Coupling Constant

The potential between the two quarks at a distance r can be written in approximation
as (1.3).
4o
V(r)=——2+kr 1.3
() =—5 (1.3)

with ag the strong coupling constant, and k& ~ 1GeV /fm. The first term indicates the
repulsion and dominates at small distances. The second term indicates the attraction
and becomes significant at large distances, not allowing the separation of the quarks
at this distance scale, thus talking about quark confinement. The running coupling
constant a, depends on the %, the value of the momentum transfer between partons
Q* = —(p1 + p2)? and is expressed by (1.4).

) a, (1?)
5 ) 2 2 1.4
as (@) 1+%(11n—2f)1n% o

Also let n be the number of colors (3 in the S.M.) and f be the number of flavors

(6 in the S.M.), as stated in Table 1.1. The term a,(u?) refers to the screening and

in specific a(0) = % We also note that there is no restriction on the value of p,
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as long as a,(p?) < 1. Evolving all results to the rest energy of the Z° boson, the
new world average of ay(My) is determined from measurements which are based on
QCD calculations in complete NNLO perturbation theory, yielding the following value
as(Mz) = 0.1183 + 0.0027 |[Bethke 03].

0.5 -
~
"‘ Theory | © ; §-
a(Q) [\ Data e |E0E
W\t Deep Inelastic Scattering A
0.4 1\ \ e*¢” Annihilation o e
Gl e b Hadron Collisions ° 7
\ Heavy Quarkonia " o=
Wy 7
R (" A"% "s(MZ?
< 245 MeV ----0.1209
0.3 ¢ Q(l4) 210 MeY 0.1182 | 7
Ofat?) i
S 180 MeV — —0.1155
R 7

0.2+

0.1}

10 Q [GeV] 100

Fi1G. 1.2: Running coupling constant as a function of Q). Figure is taken from [Bethke 03].

1.4 The Asymptotic Freedom

At short distances the strong force becomes weak and this is the feature, responsible for
the asymptotic freedom. The consequences of the asymptotic freedom are the following:

i. In large energies the running coupling constant is small, thus justifies the use of

perturbation theory and explains the quasi partonic behavior of quarks and gluons
in large energy scale; and

ii. in large distance where the coupling constant is not small a, ~ 1, the perturbation
theory seizes to be applicable and the infrared (IR) modes become of crucial im-

portance. Along with the confinement, the spontaneous chiral symmetry breaking
is also manifested.
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TAB. 1.1: Overview of the three generations of quarks and leptons families, along with the medi-
ators of all forces, except the gravitational. By ¢, it is denoted the value of the electric
charge of the electron (g. = 1.6 - 10719 Cb). Values are taken from [Amsler 08].

PARTICLE FAMILY SYMBOL MASS [MeV/c?]  ELECTRIC CHARGE [|q.|]

FIRST GENERATION

u 1.5-4.0 +2/3
Quarks d 4.0-8.0 ~1/3
e 0.511 -1
Leptons 7 <22-107° 0
SECOND GENERATION
c 11501350 +2/3
Quarks s 80-130 ~1/3
o 105.7 ~1
Leptons 7, <0.17 0
THIRD GENERATION
Quark t 170900 + 1800 +2/3
Harss b 41004400 ~1/3
T 1784.1 -1
Leptons o <155 0
FORCE GAUGE BOSONS  MASS [GeV/c?] ELECTRIC CHARGE [|q.|]
Strong g (8 gluons) 0 0
Electromagnetic v (photon) 0 0
W= 80.3980 £ 0.0250 +1
Weak

ZY 91.1876 £ 0.0021 0
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1.5 The Deconfinement of Quarks

The study of the asymptotic freedom, can be attained with high energy collisions. At
high density, the quarks and the gluons can be decoupled over a volume, much larger
than the nucleonic (~ 1fm?).

EXPLORING the PHASES of QCD

T PO Relativistic
! ® Heavy Ion
N Collisions

~

AN Quark—Gluon Plasma

~170
MeV
Universe
W Color Superconductor
Hadron Gas
Y Crystalline
\ Color Super—
\\ conductor? CFL
AY
B Neutron Stars?
ubaryon
Vacuum Nuclei

Fi1G. 1.3: Phase diagram of the nuclear matter. Heavy ion collisions at RHIC are expected to be
of low baryon chemical potential (ug) and temperature (T') greater than 170 MeV. The
hatched region indicates the current expectation for the phase boundary based on lattice
QCD calculations at ug = 0. Figure is taken from [Rajagopal 09].

1.6 The QCD Phase Diagram

The phase diagram of the hadronic and partonic matter in terms of temperature 7" and
baryo-chemical potential pp is presented in Figure 1.3. The hatched region indicates
the current expectation for the phase boundary based on lattice QCD calculations for
g = 0. The high temperature and the low pp region is expected to be accessible via
heavy ion collisions. Colliders with various energies (LHC, RHIC, SPS, AGS, and SIS)
can reach different regions in this phase diagram. The QGP matter that can be created
in the laboratory is believed to have existed in the first few micro-seconds after the Big
Bang. The expected high temperature and minimum baryonic chemical potential of
the early universe when QGP matter was created is shown in the phase diagram. The
region near the zero temperature and high pp is where the deconfined high-density
phase is also predicted to exist (i.e. in the interior of neutron stars).
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Numerical calculations of lattice QCD can be performed to check the dependence of
the temperature on the energy density of the system. In a quark gluon plasma phase,
due to the increase in the number of the degrees of freedom, it is expected that there will
be a change in the energy density. Such a dependence of the energy density e, divided
by T% on T = T, is presented in Figure 1.4. The number of the degrees of freedom
rises steeply for temperatures above the critical value denoted by 7., corresponding
to a transition of the system to a state where the quarks and gluons are deconfined
(cf. Section 1.5). Let us add also that the critical temperature is predicted to be in
the region of 150-190 MeV.

r RHIC et —
14 | e/T p/T
4 L
12 t t 1
10 1 L
the| 3

8 I 3 flavor ]

SPS 2 flavor 3 flavour s
6 2| 2+1 flavour = .

0 flavor 2 flavour
4 1l pure gauge -
2+ |
0 . | L | | 0 0 L o L L |
100 200 300 400 500 600 100 200 300 400 500 600

Fi1G. 1.4: Left: The energy density (¢) as a function of the temperature (T) scaled by T* from
lattice QCD calculation. The realistic case is for N = 2 + 1 flavors. Right: The pressure
(p) as a function of temperature (T) scaled by T%. Note that the pressure is continu-
ous in the region where there is a sharp change in the energy density. Figure is taken
from [Gyulassy 05].

1.7 The Physics of the Relativistic Heavy Ion Colli-
sions

According to the Bjorken scenario [Bjorken 82|, during a heavy ion collision the fol-
lowing phases occur in a chronological order, as depicted in Figure 1.5. In particular:

i. Pre-equilibrium state (when formation of the elementary constituents takes place).
During this phase, the nucleons pass through each other and parton-parton inter-
actions occur, where a parton is defined as a quark or a gluon. Due to high energy
density, the released partons can re-scatter multiple times, losing part of their ini-
tial energy in the interaction region. A fireball of interacting quarks and gluons
expands and the baryon chemical potential (up) vanishes at mid-rapidity y = 0,
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il.

1il.

iv.

while the forward and the backwards regions, y # 0, are rich in baryons corre-
sponding to the remnants of the colliding nuclei. At this stage the scattering of
hard partons also occurs;

Chemical and thermal equilibrium: the nuclear matter reaches equilibrium at the
proper time 7y (just before the QGP formation) through parton re-scattering in
the medium. The energy density obtained in the collisions at RHIC is above the
critical value, so when the interacting medium is thermalised, the QGP might be
produced;

The QGP phase, evolving according to the laws of hydrodynamics;
The mixed phase of QGP and the Hadron Gas (HG); and

the hadronization and freeze-out. In particular, the expanding QGP cools down
fast and quickly reaches the transition temperature. It evolves into the phase of
hadron gas, finally reaching the state known as chemical freeze-out. The resulting
hadronic gas continues to expand, cooling down the interaction rate between the
hadrons. Then the system evolves to the thermal equilibrium; this state is known
as thermal freeze-out. After this moment, hadrons are able to move freely.

N Freeze-Out T Tin To

Fi1G. 1.5: Cartoon depicting the space-time evolution of Quark Gluon Plasma.
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1.8 The Quark Gluon Plasma

Historically, the term Quark-Gluon plasma was first proposed by Shuryak [Shuryak 78|.
Over the last 20 years many ideas have evolved and a lot of definitions have been pre-
sented. We shall restrain to the following one: QGP can be a (locally) thermally
equilibrated state of matter in which quarks and gluons are deconfined from hadrons,
so that color degrees of freedom become manifest over nuclear, rather than merely nu-
cleonic, volumes [Adams 05]. Some theoretical predictions for the existence of QGP
are:

i. Enhancement of strange particle production;
ii. J/1 suppression;

iii. the initial temperature of the medium can be measured from the thermal photons
or di-leptons;

iv. the jet quenching; and

v. the restoration of the chiral symmetry.

— T
- * d+Au FTPC-Au 0-20% :

0.2~ —
- - ——p+p min. bias ﬁln :

* Au+Au Central

1/Nqyiggor AN/A(AQ)

A ¢ (radians)

F1G. 1.6: Di-jet fragment azimuthal correlations in STAR experiment. In d+Au the di-jets remain
unquenched relative to the mono jet correlation observed in central Au+Au collisions. All
runs are at /sy, = 200 GeV. It is believed that the existence of QGP is responsible for
the creation of the jet quenching in Au+Au collisions, whereas in p+p and d+Au, no such
a state of matter seems to be present. Figure is taken from [Adams 03].
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1.8.1 The Jet Quenching

It was predicted that at high momentum, partons lose energy via gluon radiation pass-
ing through the dense QGP matter [Gyulassy 91|. The latter is called jet quenching and
can be studied using the Nuclear Modification factor, Section 1.9. The manifestation
of the quenching of jets can be interpreted as:

i. Suppression of the yield of high-p, particles;

ii. the ratio p/p can be also quenched because of the different energy loss in the
medium of gluons and quarks; and

iii. a correlation of the impact parameter (Section 1.10 of the collision with the jet
quenching yield. The phenomenon is favored in central collisions.

In Figure 1.6 it is presented results of STAR collaboration [Adams 03], denoting the jet
quenching in Au+Au by the di-jet azimuthal correlation. The same quantity remains
unquenched for the p+p and d-+Au collisions at /s = 200 GeV as shown in the same
plot.

1.8.2 The Enhancement of Strange Particle Production

Proposed by J. Rafelski and B. Miiller in 1982 |Rafelski 82| as one of the prediction for
the existence of the QGP, is the enhancement of strange hadrons. In particular inside
the deconfined QGP medium, the strange quark (s) is saturated by ss pair production
in gg — s§ and ¢§ — s5 (where ¢ = u, d) reactions. The energy threshold for the s and
s production in QGP is 300 MeV, which is approximately the mass of the two quarks,
yielding to the production of multi-strange baryons and strange antibaryons. Often
the ratio of the yield of K /7 is considered as the expression in order to quantify the
strangeness enhancement. In other words in the QGP state the strange quarks have
to be thermalised.

1.8.3 The Suppression of J/¢

The idea was introduced in 1986 by Matsui and Satz [Matsui 86| that the charm quark
(¢), will be Debye-screened from its anti-quark ¢, resulting in a .J/1 suppression. The
potential between the quarks, as stated in Section 1.3, allows the formation of c¢, char-
monium (J/¥, ', x.) and bb states called bottomonium such as Y, x,, Y/, etc.
The NA50 collaboration [Beole 00], announced such a suppression in the channel
J/v — ppt. Quantitatively the suppression of the .J/v is measured with respect
to the Drell-Yan muons process, where the latter process scales down with the number
of the binary N-+N collisions.
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1.8.4 Photons

The photons can be created during heavy ion collisions, as a result of:

i. In the early stages of the collisions the prompt photons initially are created by
parton-parton scattering and this phase is common both in p+p and in A+A col-
lisions;

ii. during the QGP phase, photons are emitted as a result of the quarks undergoing
collisions with other quarks and gluons in the created medium,;

iii. as the system expands and cools, the hadronization takes place at a temperature
T = 150-200 MeV allowing the scattering of light unflavored mesons such as the
7, p and w. Also the light neutral mesons contribute via the decays 7 — 2+ and
n — 37% in the spectrum from a few MeV spanning to several GeV; and

iv. finally through the kinetic freeze-out, the resonances contribute mostly in the pho-
ton spectrum in the energy domain of some MeV.

Direct photons are an interesting tool to study the possible QGP formation. They are
produced in:

i. ¢+ q — g+ 7: quark-antiquark annihilation; and
ii. ¢+ g — g+ v: quark-gluon Compton scattering.

The direct photons do not come from hadronic decays. Theoretical models predict that
the thermal photons should dominate the direct yield of photons at a low transverse
momentum. As the yield of thermal photons falls off exponentially with transverse
momentum, the direct photons from the initial hard scattering will dominate the spec-
trum at higher transverse momentum values. Additionally, a contribution of photons
produced during parton fragmentation is observed. The measurements of thermal pho-
tons can provide information about temperature. Measurements of the prompt photons
allow the study of the jet properties interacting with the medium.

The production of the prompt photons is represented by the nuclear modification
factor (Section 1.9) with the yields of hadrons in A+A collisions relative to the scaled
reference measured in p-+p collisions. Thus direct photons provide a tool to check the
binary collision scaling since their production is not affected by the medium produced
in the final stage of the interaction. At RHIC energies it is possible to study direct
photons in Au+Au, d+Au and p+p collisions. Prompt photons in p+p collisions
provide an excellent test of QCD formation, while results from d-+Au collisions may
be used to investigate nuclear effects.
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1.8.5 Di-leptons

Along with photons, the study of leptons is proven to be an interesting tool in order
to deduce the properties of the formation of matter during heavy ion collisions. Due
to the fact that leptons do not interact strongly with the medium, they exhibit a
similar behavior like photons in terms of production stages. In particular, there exist
prompt di-leptons created from the hard scattering processes, as well as thermal ones
emitted from the QGP. Finally during the chemical freeze-out di-leptons are produced
as byproducts of the meson decays.

Resonances such as p, ¢ and w are the main sources for the thermal di-lepton cre-
ation below the energy domain of 1.5 GeV. Medium effects can broaden the width of the
p resonance. In the region < 2 GeV, the semileptonic decays of heavy flavor mesons and
Drell-Yan processes (q7 — [~1") are favored, producing sufficient di-leptons. For higher
energy scale the di-leptons can also be a result of the decay of J/1, ¢, T, Y" and Z°.
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FiGc. 1.7: Upper: LQCD calculations for two dynamical quark flavors showing the coincidence
of the chiral symmetry restoration, marked by the rapid decrease of chiral condensate
<wz/;> (right frame) and deconfinement (left frame) phase transitions. Lower: The chiral
transition leads toward a mass degeneracy of the pion with scalar meson masses. All plots
are as a function of the bare coupling strength § used in the calculations; increasing 3
corresponds to decreasing lattice spacing and to increasing temperature. Figure is taken
from [Adams 053].
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1.8.6 The Restoration of Chiral Symmetry

The expectation value <¢1ﬁ> is often called quark condensate and gives a description
of qq pairs found in the QCD vacuum. The breaking of the chiral symmetry, involves
the confined quarks that do not have zero mass, but rather a few hundreds of MeV,
cf. Table 1.1. At high temperature, the quark condensate tends to vanish, thus talking
about the restoration of chiral symmetry. The phase during which neither confinement,
nor chiral symmetry breaking occurs, is generally attributed to the presence of QGP.

Using lattice QCD (LQCD) calculations, in order to extract physically relevant
predictions and to be extrapolated from the discrete case to the continuum (lattice
spacing approaches zero), chiral (actual current quark mass) and thermodynamic (large
volume) limits, the deconfinement transition may be accompanied by a chiral symmetry
restoration transition, cf. Figure 1.7.

1.9 The Nuclear Modification Factor

The comparison of the particle spectra measured in Au-+Au collisions and the spectra
in which the QGP is not present, such as the d+Au and p+p systems, allows the better
comprehension of the particle production mechanisms. A useful tool to achieve this
comparison is the nuclear modification factor as defined in (1.5).

d*N,, /dp.dn
(<Nc011> /UPP>(d2UPP/dedn)

The yield in nucleus-nucleus case (A+A) is contained in the numerator. The denom-

inator contains a calculation of the Glauber Model, as described in Section 1.10. In

2
Opp

dp-dn
by the number of binary collisions (N.y) in the A+A case.

Raa(pr) = (1.5)

particular, it scales down to the —for the p+p yield—and for a given centrality,

1.10 The Glauber Model

In the heavy ion collisions the values that describe the geometry of the collision are:

i. The mean impact parameter (b), which is the distance between the centers of the
2 nucleons (cf. Figure 1.8);

ii. the mean number of the participating nucleons (Np,.), that take part in at least
in one collision;

iii. the mean number of the binary collisions (N ) since a nucleon can undergo more
than one collision; and



14 1. THEORETICAL INTRODUCTION

iv. the number of the nucleon-spectators, i.e. the nucleons that did not participate in
the collision, (cf. Figure 1.8).

Experimentally we have no direct information about any of the above set of variables,
rather than a measurement of the emitted charged particles given by the various sub-
detectors. The Glauber model [Glauber 59|, is a geometrical interpretation of the
collision of the nuclei, allowing the deduction of the above collisional variables. In
particular, this model considers the collision of the two nuclei in terms of the individual
interactions of the constituent nucleons. The following assumptions are being made:

i. The nucleons’ trajectory is a straight line and parallel to the beam axis; and

ii. a nucleus-nucleus (A+A) collision is considered as a superimposition of the subse-
quent nucleon-nucleon (N-+N) collisions.

Furthermore the model considers a Woods-Saxon density (1.6) for the space distribution
p(r)en of the nucleons:

Po
pch(r) = T e (1-6)
l1+4+e =

where r, = rq - As. The parameters to be determined are r. and c. Concerning the
constant py, it is calculated in that way in order to fulfill (1.7) [Cottingham 01].

/pch(r) d’r = 47 /000 pen(r) Tdr = Z (1.7)

As an application of (1.7), we also note that pg, 7o and ¢ are constants, e.g. in the case
of the Au nuclei, the constants are 7o = 6.38 fm, ¢ = 0.535 fm yielding py = 0.169 fm >,

Fi1G. 1.8: Left: Cartoon depicting a peripheral collision. Right: Cartoon depicting a central col-
lision. In both figures it is also represented the z-(left) and transverse (right) profile of
each collision.
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1.11 The Experimental Quantities

In the experimental nuclear and particle physics, the phase space observables of parti-
cles emerging from a heavy-ion collision are the following:

1.11.1 Rapidity
Let us consider a particle with a 4-momentum given by (1.8)

P = (E, pa; py, p2) (1.8)
The rapidity y is hence defined by (1.9)

1. E+p,
—1In
2 E—p.

y (1.9)

where p,, is the longitudinal momentum (1.10) component usually—for convenience