
Contextualization in Practice: The Clemson
Experience

Michael Fenn
Clemson University
E-mail: mfenn@clemson.edu

Sebastien Goasguen
Clemson University
E-mail: sebgoa@clemson.edu

Jerome Lauret∗
Brookhaven National Laboratory
E-mail: jlauret@bnl.gov

Dynamic virtual organization clusters with user-supplied virtual machines (VMs) have advan-
tages over generic environments. These advantages include the ability for the user to have a priori
knowledge of the scientific tools and libraries available to programs executing in the virtualized
environment well as the other details of the environment. The user can also perform small-scale
testing locally, thus saving time and conserving computational resources. However, user-supplied
VMs require contextualization in order to operate properly in a given cluster environment. Two
types of contextualization are necessary: image-level and instance-level. Examples of image-level
contextualization include one-time configuration tasks such as ensuring availability of ephemeral
storage, mounting of a cluster-provided shared filesystem, integration with the cluster’s batch
scheduler, etc. Also necessary is instance-level contextualization such as the assignment of MAC
and IP addresses. This paper discusses the challenges and techniques used to overcome those
challenges in the contextualization of the STAR VM for the Clemson University cluster environ-
ment. Also included are suggestions to VM authors to allow for efficient contextualization of
their VMs.

13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research
February 22-27, 2010
Jaipur, India

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:mfenn@clemson.edu
mailto:sebgoa@clemson.edu
mailto:jlauret@bnl.gov

Contextualization in Practice: The Clemson Experience Jerome Lauret

1. Introduction

As cloud computing and virtual machines (VMs) become more popular, there is great interest
in adapting their use to the many tasks of computational science. However, due to a proliferation
of virtualization technologies, a given VM disk image cannot be necessarily used with any given
hypervisor. Also, a VM image that must integrate with pre-existing infrastructure must be further
modified. This process is known as contextualization.

The Virtual Organization Cluster (VOC) model has been developed by the Cyberinfrastructure
Research Group at Clemson University in an attempt to ameliorate these concerns. The VOC model
provides a framework for developing virtual clusters that seamlessly integrate with existing grid and
cloud computing technologies. This integration requires sound principles for contextualization as
well as procedures that are guided by those procedure. This work seeks to document both.

Central to the VOC model is the idea that a Virtual Organization (VO) is able to to provide
a customized VM image to the VOC provider. In order to validate this aspect of the VOC model,
a real VM image created by the STAR VO has been deployed on a testbed cluster and a realistic
workload successfully run.

The remainder of this work is organized as follows: the VOC model is discussed in Section 2,
contextualization principles are presented in Section 3, the procedure followed in contextualizing
the STAR VM is described in Section 4, the results of testing performed on that image can be found
in Section 5, and conclusions are presented in Section 6.

2. Virtual Organization Clusters

Virtual Organization Clusters (VOCs), first put forward in [3] and illustrated in Figure 1, are
a cloud-computing construct that enable the creation of virtual environments. These environments
have the properties of being compatible across physical sites, deployable without per-hypervisor
node replication of images, transparent to end users, able to be implemented non-destructive man-
ner, and customizable by a Virtual Organization. VOCs are made of virtual machines (VMs)
spawned from a single image, and thus their worker nodes are trivially homogeneous. If a grid
site uses a distributed filesystem such as PVFS [1], VOCs are booted directly from that filesystem,
without the need to copy an the image to each node. VOCs are transparent to the end user because
a normal grid site is presented as a user interface. VOC are autonomically scaled without the user
having to make explicit reservation requests.

A key provision of the VOC model is its separation into two administrative domains, the Vir-
tual Administrative Domain (VAD) and the Physical Administrative Domain (PAD). Each physical
site on the grid is a unique PAD containing all hardware, infrastructure, and systems software. Each
VOC is a distinct VAD that is managed by the VO. This distinction between PAD and VAD allows
each VO to have its own customized, virtualized environment.

Jobs are submitted to the VOC through a dedicated head node. This head node contains a
standard installation of the Open Science Grid Compute Element software stack. Thus the VOC
appears to the user as a normal site on the grid. A VOC component monitors the job queue on the
head node and autonomically starts and stops VMs in response to load. VMs must be contextual-

2

Contextualization in Practice: The Clemson Experience Jerome Lauret

Figure 1: A Virtual Organization Cluster

ized [2] both at boot-time and when the image is received by the VOC. Boot-time contextualization
is defined in the VOC model as the leasing of certain resources from the PAD to the VAD.

3. Contextualization Principles

The topic of VM contextualization merits further discussion. It is a safe assumption that any
given VM image will not successfully integrate into a VOC as implemented at any given site.
The image must be contextualized in two phases: image-level and instance-level. Image-level
contextualization occurs once per VM disk image per site. Instance-level contextualization occurs
once per VM instance.

3.1 Image-level contextualization

Important considerations for image-level contextualization are image format, image layout,
shared filesystem support, and batch scheduler integration. Image format refers to the representa-
tion of the disk’s data within the image file. Image layout refers to how the various partitions are
placed on the disk and to what other disk structures are present.

The simplest image format is that of the raw disk image. A raw image is simply a file contain-
ing the exact byte string that would appear on a physical device. This format is highly compatible
but is not space efficient because the image file’s size must be equal to the capacity of the virtual
device being represented. Note that raw images compress very well with gzip compression, so they
are fairly easy to distribute. In order to mitigate the in-use size issue, there has been a proliferation
of virtual image formats such as VMDK, VDI, VHD, and QCOW2. These formats vary in imple-
mentation and hypervisor support, but they all allow the compact representation of a disk image.
When utilizing one of these formats, the size of the image is determined by the size of actual data

3

Contextualization in Practice: The Clemson Experience Jerome Lauret

present on the device, instead of by the capacity of the device. In order to contextualize the VM
image format, the image must simply be converted to a format that is compatible with the hyper-
visor used at a given site. The qemu-img tool provides conversion functionality that can convert
images between many of the popular formats. Hypervisor vendors also generally provide a tool
that can convert between their format and the raw format.

The image layout issue can become much more involved. The two main image layouts are the
partition image layout and the disk image layout. A partition image contains a representation of
a single disk partition. Essentially, this layout could be referred to as a filesystem image, since a
partition does not contain any metadata with regard to itself. This layout requires a hypervisor that
is able to present individual partitions to a guest OS. Currently, only the Xen hypervisor is capable
of this. The disk image layout contains a representation of an entire disk, including the master boot
record, boot sector, and partition table. All hypervisors, including KVM, are capable of utilizing
this type of image. Since Xen requires the guest kernel and initial ramdisk to be located outside
of the VM image, Xen may only boot from disk images when it is used in conjunction with the
pygrub utility. This utility mounts the disk image and extracts the kernel and initial ramdisk from
the image, and as such, can only be utilized with a disk in the raw disk format. There is no set
procedure for converting between partition images and disk images. Images will generally need
to be converted (at least temporarily) to the raw format in order to allow standard disk tools to be
utilized. There are, however, several useful tools and one guiding principle. The principle is: a
disk image is the same as a physical disk, and a partition image is the same as a physical partition.
Converting between image formats is a matter of getting the correct disk structures into the correct
places. Useful tools include:

• fdisk, allows the calculation of partition extents and the creation/modification of partition
tables,

• dd, allows block level copying of defined sections of an image,

• mount, when used with the -o loop option allows a partition image to be mounted,

• kpartx, allows the exposure of the partitions of a disk image as individual devices,

• chroot, allows the running of the native tools present in the image if necessary.

These tools, along with the bootloader installer, should be sufficient to assemble a disk image from
a set of partition image or decompose a disk image into a set of partition images.

As the OSG compute node specification requires that various filesystems be shared among the
compute element and its associated worker nodes, the image must also be contextualized so that it
properly mounts those filesystems. In particular, any software libraries needed to mount the site’s
shared filesystem must be installed and the $OSG_APP, $OSG_DATA, and $OSG_GRID shares
must the mounted in the locations defined by the CE configuration.

There must also be a way to get computational jobs into the VM. Either the site’s batch sched-
uler or a VO-level scheduling system must be installed into the VM image. If the site’s batch
scheduler is installed, it is prudent to configure the scheduling system in such a way that the VM’s
scheduling pool may be partitioned off from the site’s general scheduling pool in order to satisfy

4

Contextualization in Practice: The Clemson Experience Jerome Lauret

the constraints of the VOC Model. If a VO-level scheduler is installed, some provision must be
made for crossing NAT boundaries.

3.2 Instance-level contextualization

Whereas image-level contextualization can be performed manually by a systems administrator,
instance-level contextualization occurs once per VM instantiation and as such must be automated.
As described in Section 2, certain resources must be leased from the physical site. These resources
include network addresses, disk space, and scheduler slots.

Network addresses, including both MAC and IP addresses, should be assigned (leased) to the
VMs in such a way as to avoid conflicts. Leasing of MAC addresses must be performed by the
hypervisor. Leasing of IP addresses may be performed by the hypervisor if it is capable of passing
this information to the guest (e.g. Xen) or may be through the standard DHCP protocol. One
such method of assignment is to implement a central leasing server. Before VM instantiation, the
hypervisor node would contact a central service and made a lease request for a MAC or IP address.
The service would then maintain a lease database in order to avoid duplication. Since MAC and IP
addresses will be unique to a hypervisor node, that node may also use a function to map its address
to that of the VM. As long as this function will not cause an overlap in addresses, this method
satisfies the uniqueness constraint without the requirement of a centralized service.

If the VOC nodes are not spawned from a single image, some allocation of disk space must
be made to the hypervisor. This could use hypervisor’s local disk, but care must be taken to avoid
exceeding the disk’s capacity, especially when dynamically resizing disk image formats are used.
Another solution would be to map LUNs of a storage area network to the hypervisor node.

If the scheduling system requires the use of fixed slots for compute nodes, then these must
also be assigned [4]. Techniques described for leasing network addresses can be easily extended to
provide for such a scheduler.

4. Contextualizing the STAR VM

A practical application of the principles and techniques discussed in Section 3 has been per-
formed at Clemson University to enable the contextualization of the STAR experiment’s VM. This
VM contains the programs and libraries necessary for the simulation and analysis of the STAR
experiment data.

The STAR VM image is provided as a Xen partition image named starworker_part.img
with no bootloader or kernel. Therefore, to use the image with KVM, it is necessary to create an
disk device. To do this with the qemu-img tool, issue the command qemu-img create -f

raw 10G starworker.img.
Then, in order to have the appropriate bootloader and kernel installed into the image, a fresh

installation of the guest operating system (Scientific Linux in this case) is performed. This instal-
lation should be performed with the target hypervisor. For QEMU/KVM, the invocation command
is qemu-kvm -hda starworker.img -m 512 -net nic -net user.

Now that the kernel and bootloader are installed into the new image, the contents of the root
directory must be copied from the provided image to the new image. Do do this, both images must
be mounted. However, the new disk image cannot be mounted directly, the partition inside the

5

Contextualization in Practice: The Clemson Experience Jerome Lauret

image must be mounted. There are two ways of doing this: using kpartx and calculating the
offset manually.

To use kpartx, issue the following commands:

1. kpartx -l starworker.img to see which loop devices will be created (some trial and
error may be necessary to mount the correct partition),

2. kpartx -a starworker.img to actually create the loop devices,

3. mount /dev/mapper/loop0p# /mnt/loopdisk where # is the partition number
to mount.

To calculate the offset manually issue the commands

1. fdisk -lu starworker.img wherein the output will contain a start column that
contains the offset of each partition as well as a header giving the units of the offset,

2. mount -o loop,offset=$(($START * $UNITS)) starworker.img

/mnt/loopdisk/ where the $START variable has been set with the value of the start
column and the $UNITS variable has been set with the value of the units given by fdisk.

Once the appropriate partition in the disk image has been mounted, the partition image is mounted
with the command mount -o loop starworker_part.img /mnt/looppart/.

Once both images have been mounted, the command cp -a /mnt/looppart/*
/mnt/loopdisk is used to copy the contents of the partition image into the disk image. Then the
images are unmounted with the commands umount /mnt/looppart and umount

/mnt/loopdisk. If kpartx was used to mount the partition, the command kpartx -d

starworker.img is issued to remove the loop devices. At this point, the STAR VM is bootable
with KVM and the site-specific batch scheduler and shared filesystems are configured as normal.

Instance-level contextualization also needs to be performed on each instance of the image. Due
to the site-local networking and storage environments, the only resource that has to be leased to the
VM instance is a MAC address. This is performed via a functional mapping from the hypervisor’s
hostname to a MAC address, avoiding the need for a central leasing service.

5. STAR VM Results

The STAR VO provided an image that was contextualized for the prototype cluster using the
procedures outlined in Section 4. Figure 2 depicts the STAR VM’s integration with the prototype
VOC. Once the VM has image-level contextualization performed, it appeared to the STAR VO in
the same manner as any of their other resources.

STAR utilized the 16 VMs available and submitted 32 jobs. The jobs 280MB of total output
which was streamed back to the Brookhaven National Laboratory (BNL) at 6.8MB/s. The total
processing time was approximately 11 hours and 7 minutes of VOC boot latency were observed.
The boot time plus virtualization overhead combined to give total VOC overhead of approximately
one percent over a local test by BNL.

6

Contextualization in Practice: The Clemson Experience Jerome Lauret

Figure 2: Integration of the STAR VM into the prototype VOC

Figure 3: Condor reaction time as observed by STAR

As shown in Figure 3, the VOC’s Condor scheduler was fast for the first two jobs due to the
fact that the watchdog was configured to keep two VMs running at all times. Jobs 2 through 16
started as soon as a VM was started and joined to the Condor pool. Jobs 17-32 were forced to wait
in the queue because there were only 16 VOC nodes available. Once the first 16 jobs completed,
Condor was able to schedule the remaining 16 jobs to the VOC nodes without delay.

6. Conclusions

Contextualization of virtual machines is an operational necessity. Of the two stages of contex-
tualization, instance-level contextualization is the most easily automated. Image-level contextual-
ization generally requires systems administrator effort due to the large number of variables present
in each specific image, hypervisor, and site configuration. The principles of contextualization that

7

Contextualization in Practice: The Clemson Experience Jerome Lauret

are presented in this work have been shown to be implementable in practice. Unfortunately, due to
the complexity of the problem they can only serve as general guides. A worthwhile future goal is
to develop a system for automating image-level contextualization.

The Virtual Organization Cluster (VOC) model worked smoothly, with very little (1%) over-
head. The model allows a VOC to appear as a normal grid site, thus giving the user confidence in a
working and validated software stack. Thus, VOCs show great promise for providing customized
environments in a way that is maximally convenient for VOs.

References

[1] P.H. Carns and W.B. Ligon and R.B. Ross and R. Thakur, PVFS: A Parallel File System for Linux
Clusters, in proceedings of 4th annual Linux Showcase and Conference (ALS’00).

[2] K. Keahey, T. Freeman, Contextualization: Providing One-Click Virtual Clusters, in proceedings of 4th
IEEE International Conference on e-Science.

[3] M. Murphy, M. Fenn, S. Goasguen, Virtual Organization Clusters, in proceedings of 17th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2009).

[4] L. Stout, M. Murphy, S. Goasguen, Kestrel: An XMPP-based Framework for Many Task Computing
Applications, in proceedings of 2nd Workshop on Many-Task Computing on Grids and Supercomputers
(MTAGS 2009).

8

