STAR Recent Results

and perspective

Sextant 697

(First sextant to be tested

Tom Trainor

(for the STAR Collaboration)

RHIC-AGS Users Meeting May 29, 2008

Agenda

Elementary Processes

spin structure of the proton ultra-peripheral collisions

Parton energy loss – pQCD

light- and heavy-flavor parton energy loss

Fragmentation and the medium – non-pQCD

modified fragmentation and medium properties

Hydro vs QCD

dynamical processes at small energy scales

first goal of the RHIC Spin program: determine the gluon polarization distribution Trainor STAR at the RHIC-AGS Users Meeting

2006 Inclusive-jets A_{LI}

Trainor

Other Global DIS Analyses

GS-C: Gehrmann & Stirling

- First global NLO analysis to incorporate inclusive DIS, SIDIS, and RHIC pp data on an equal footing
- <u>Node</u> in gluon distribution near $x \sim 0.1 \underline{\text{opposite phase}}$ from GS-C

di-jets: direct access to parton kinematics at LO

Trainor

Di-jet Sensitivity in Run 9 EMCal acceptance combinations

$A_N 2006 \text{ Final Results} - \text{FPD}$ x_f dependence of A_N for forward π production

M. Boglione, U. D'Alesio, F. Murgia arXiv:0712.4240

SIDIS measurements and forward π^0 , π^{\pm} data have small kine overlap, but...

most features of RHIC $A_N(x_F)$ data described by phenomenology from SIDIS

 $p_{\rm T}$ dependence of $A_{\rm N}$ at fixed $x_{\rm F}$ <u>not</u> explained Sivers: $A_{\rm N}$ should <u>decrease</u> with increasing $p_{\rm T}$

pp2pp: Tagged Forward Protons

- Elastic and inelastic hadron diffraction and its spin dependence in unexplored *t* and *s* ranges
- Structure of color-singlet exchange in non-perturbative regime of QCD
- Central production of light and massive systems
 - Particle production
 - Exotics: glueballs, hybrids, ...

- Roman Pots (RPs) measure momentum transfer from diffracted protons
- STAR RPs installed (Phase I, 2008) (Phase II, additional RPs Run 11)
 - No impact on backgrounds in STAR mid-rapidity detectors
- pp2pp integrated into STAR Trigger and DAQ systems

Trainor

UPC Processes

ultra-peripheral collisions

Entrie

250

- Coherent/incoherent photo-production of p⁰ $(\sqrt{s_{NN}} = 130, 200 \text{ GeV})$
 - Excludes several models: PRL 89 272302 (2002); PRC 77, 034910 (2008)
- ρ^0 photo-production in dAu $\sqrt{s_{NN}} = 200 \text{ GeV}$ and AuAu $\sqrt{s_{NN}} = 62 \text{ GeV}$
- **Observation of two-source** interference in the photo-production reaction AuAu→AuAup⁰ (EPR paradox)
- Resonant $\pi^+\pi^-\pi^+\pi^-$ photo-production in AuAu collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - Test of the coupling to the nucleus, • $\rho(1450)$ and $\rho(1700)$ candidates

• π+π-

 $\pi + \pi + \pi - \pi - \pi$

e-h Azimuth Correlations

p-p 200 GeV reference system

charm, bottom, NLO processes (splitting)

J/ψ Production in p-p

Y Production in p-p and Au-Au

first measurement of Y in A-A

cross section measured consistent with pQCD

on-going analysis: first look at Υ R_{AA} 10-70× improvement with RHIC II

Di-hadron, y-hadron Correlations

Away-side Di-hadron FFs

\rightarrow Modified Fragmentation Model

MFM: H. Zhang et al., PRL 98, 212301 (2007)

STAR at the RHIC-AGS Users Meeting

compared to central Cu-Cu

γ-hadron Correlations, Clusters

Energy and System Dependence

dashed lines guide the eye angular correlation systematics

common jet/ridge trends for different collision systems

Trainor

Di-hadron Correlations w.r.t. R

path-length increases with ϕ_s (in \rightarrow out of plane) \rightarrow increasing away-side modification

di-hadrons relative to the reaction plane

- Ridge drops from in-plane to out-of-plane
- Jet peak stays consistent with d-Au

Femtoscopy Systematics

Radial Flow Effects

 m_t dependence: evidence for radial flow

 m_{t} trends the same in A-A, p-p

homogeneity region shrinks

flow field

as m_t increases

Trainor

 \rightarrow evidence for strong radial flow in A-A but, does that imply radial flow in p-p? what relation to QCD processes?

STAR at the RHIC-AGS Users Meeting

ratio

v₂ and its fluctuations probe dynamics at different time scales

Incomplete Thermalization?

CGC E: A.Adil et al. PRC 74, 044905 (2006)

 $v_2 / \epsilon \sim 30\%$ below ideal Hydro, even for central collisions

Knudsen number K is not ~ 0 as for ideal hydro, must be > 0.5 to explain v_4/v_2^2

some features inconsistent with complete thermalization

not easily dismissed

 K/π Fluctuations

 K/π fluctuations appear consistent with NA49 at highest SPS energy

K/ π fluctuations at same dN/d η : little variation with energy or system size

Higher RHIC luminosity and STAR ToF should greatly improve this analysis

featured element of low-energy scan program

2D Angular Autocorrelations

Model-Fit Parameters

Energy and Centrality Trends

Summary

- 2006 inclusive-jet A_{LL} data restrict $|\Delta G|$ to small values, inclusive- πA_N data consistent with DIS on x_F , puzzling on p_T
- Di-jet, γ -jet A_{LL} data should provide direct access to differential $\Delta g(x) \rightarrow$ gluon spin structure fully revealed
- Heavy-flavor E-loss probes coming on line, strong pQCD tests
- Accurate parton E-loss through di-hadron, γ-hadron studies
- Fragmentation strongly modified, insensitive to leading flavor
- Complex medium dynamics strongly coupled to parton E-loss
- Evidence for strong transverse flow, but paradoxical aspects
- Conventional hydro picture, viscosity challenged by minijets
 STAR: Unprecedented access to QCD in p-p and A-A RHIC II and STAR ToF: essential upgrades