<z> Details
The goal of this analysis is to relate the neutral pions to the jets they are embedded in. The analysis is done using the common spin analysis trees, which provide the necessary tools to combine the jet and neutral pion analysis.
A neutral pion is associated to a parent jet if it is within the jet cone of 0.4 in eta and phi. To avoid edge effects in the detector, only neutral pions with 0.3 < eta < 0.7 are accepted.
E_neutral / E_total < 0.95
higher energy photon of Pi0 > 2.8 GeV (HT1 trigger); > 3.6 GeV (HT2 trigger)
combination HT1/HT2: below 5.7 GeV only HT1 is used, above that both HT1 and HT2 are accepted
The final result uses both HT1 and HT2 triggers, but a trigger separated study has also been done, as shown below. There, HT2 includes only those HT2 triggers that do not satisfy HT1 (because of prescale).
Figure 1: <z> for Pi0 in jets as a function of p_T for HT1 and HT2 triggers. Also shown is the mean jet p_T as a function of pion p_T.
Figure 2: Bin-by-bin ratio of pion to jet p_T. The <z> is taken from the mean of these distributions, the error is the error on the mean. A small fraction of all entries have higher Pi0 p_T than jet p_T. Similar behavior is also observed for Pythia MC with GEANT jets. This obviously increases the <z>. An alternative would be to reject those events. The agreement with MC becomes worse if this is done.
Here is the data - MC comparison for 3 of the above bins. For the simulation, the reconstruction of the Pi0 is not required to keep statistics reasonable, so the true Pi0 pt is used. However, the MC jet finding uses all momenta after Geant, this is why the edges are "smoother" in the MC plot than in the data plots. Since <z> is an average value, this is not expected to be affected by this, since on average the Pi0 pt is reconstructed right.
Figure 3: Data / MC for Bin 5: 6.7 to 8 GeV
Figure 4: Data / MC for Bin 6: 8 to 10 GeV
Figure 5: Data / MC for Bin 7: 10 to 12 GeV