11 Nov

November 2008 posts

 

2008.11.06 Gamma-jet reconstruction with the Endcap EMC (Analysis status update)

Ilya Selyuzhenkov November 06, 2008

Gamma-jet reconstruction with the Endcap EMC (Analysis status update for Spin PWG)

 

2008.11.11 Yields vs. analysis cuts

Ilya Selyuzhenkov November 11, 2008

Data sets:

Figure 1: Reconstructed gamma pt for di-jet events and
Geant cuts: pt_gamma[Geant] > 7GeV and 1.05 < eta_gamma[Geant] < 2.0
Total integral for the histogram is: N_total = 5284
(after weighting different partonic pt bins and scaled to 3.164pb^-1).
Compare with number from Jim Sowinski study for
Endcap East+West gamma-jet and pt>7 GeV: N_Jim = 5472
( Jim's numbers are scaled to 3.164pb^-1 : [2539+5936]*3.164/4.9)

Figure 2: Reconstructed jet pt for di-jet events and the same cuts as in Fig. 1

Yield vs. various analysis cuts

List of cuts (sorted by bin number in Figs. 2 and 3):

  1. N_events : total number of di-jet events found by the jet-finder
  2. cos(phi_gamma - phi_jet) < -0.8 : gamma-jet opposite in phi
  3. R_{3x3cluster} > 0.9 : Energy in 3x3 cluster of EEMC tower to the total jet energy
  4. R_EM^jet < 0.9 : neutral energy fraction cut for on away side jet
  5. N_ch=0 : no charge tracks associated with a gamma candidate
  6. N_bTow = 0 : no barrel towers associated with a gamma candidate (gamma in the endcap)
  7. N_(5-strip cluster)^u > 2 : minimum number of strips in EEMC SMD u-plane cluster around peak
  8. N_(5-strip cluster)^v > 2 : minimum number of strips in EEMC SMD v-plane cluster around peak
  9. gamma-algo fail : my algorithm failed to match tower with SMD uv-intersection, etc...
  10. Tow:SMD match : SMD uv-intersection has a tower which is not in a 3x3 cluster

Figure 3: Number of accepted events vs. various analysis cuts
The starting number of events (shown in first bin of the plots) is
the number of di-jets with reconstructed gamma_pt>7 GeV and jet_pt>5 GeV
upper left: cuts applied independently
upper right: cuts applied sequentially
lower left: ratio of pp2006 data vs. MC sum of gamma-jet and QCD-jets events (cuts applied independently)
lower right:ratio of pp2006 data vs. MC sum of gamma-jet and QCD jets events (cuts applied sequentially)

Figure 4: Number of accepted events vs. various analysis cuts
Data from Fig. 3 (upper plots) scaled to the initial number of events from first bin:
left: cuts applied independently
right: cuts applied sequentially

2008.11.18 Cluster isolation cuts: 2x1 vs. 2x2 vs. 3x3

Ilya Selyuzhenkov November 18, 2008

Data sets:

2x1, 2x2, and 3x3 clusters definition:

  • 3x3 cluster: tower energy sum for 3x3 patch around highest tower
  • 2x2 cluster: tower energy sum for 2x2 patch
    which are closest to 3x3 tower patch centroid.
    3x3 tower patch centroid is defined based
    on tower energies weighted wrt tower centers:
    centroid = sum{E_tow * r_tow} / sum{E_tow}.
    Here r_tow=(x_tow, y_tow) denotes tower center.
  • 2x1 cluster: tower energy sum for high tower plus second highest tower in 3x3 patch
  • r=0.7 energy is calculated based on towers
    within a radius of 0.7 (in delta phi and eta) from high tower

Cuts applied

all gamma-jet candidate selection cuts except 3x3/r=0.7 energy isolation cut

 

Results for 2x1, 2x2, and 3x3 clusters

  1. Energy fraction in NxN cluster in r=0.7 radius
    2x1, 2x2, 3x3 patch to jet radius of 0.7 energy ratios
  2. Yield vs. NxN cluster energy fraction in r=0.7
    For a given cluster energy fraction yield is defined as an integral on the right
  3. Efficiency vs. NxN cluster energy fraction in r=0.7
    For a given cluster energy fraction
    efficiency is defined as the yield (on the right)
    normalized by the total integral (total yield)

 

Efficiency vs. NxN cluster energy fraction in r=0.7

Efficiency vs. NxN cluster energy fraction in r=0.7

Figure 1b: 2x1/0.7 ratio

Figure 2b: 2x2/0.7 ratio

Figure 3b: 3x3/0.7 ratio

Figure 4b: 3x3/0.7 ratio but only using towers which passed jet finder threshold

Energy fraction in NxN cluster within r=0.7 radius

Energy fraction in NxN cluster within r=0.7 radius

Figure 1a: 2x1/0.7 ratio

Figure 2a: 2x2/0.7 ratio

Figure 3a: 3x3/0.7 ratio

Figure 4a: 3x3/0.7 ratio but only using towers which passed jet finder threshold

Yield vs. NxN cluster energy fraction in r=0.7

Yield vs. NxN cluster energy fraction in r=0.7

Figure 1c: 2x1/0.7 ratio

Figure 2c: 2x2/0.7 ratio

Figure 3c: 3x3/0.7 ratio

Figure 4c: 3x3/0.7 ratio but only using towers which passed jet finder threshold

2008.11.21 Energy fraction from 2x1 vs. 2x2 vs. 3x3 or 0.7 radius: rapidity dependence

Ilya Selyuzhenkov November 21, 2008

Data sets:

2x1, 2x2, and 3x3 clusters definition:

  • 3x3 cluster: tower energy sum for 3x3 patch around highest tower
  • 2x2 cluster: tower energy sum for 2x2 patch
    which are closest to 3x3 tower patch centroid.
    3x3 tower patch centroid is defined based
    on tower energies weighted wrt tower centers:
    centroid = sum{E_tow * r_tow} / sum{E_tow}.
    Here r_tow=(x_tow, y_tow) denotes tower center.
  • 2x1 cluster: tower energy sum for high tower plus second highest tower in 3x3 patch
  • r=0.7 energy is calculated based on towers
    within a radius of 0.7 (in delta phi and eta) from high tower

Cuts applied

all gamma-jet candidate selection cuts except 3x3/r=0.7 energy isolation cut

Results

There are two sets of figures in links below:

  • Number of counts for a given energy fraction
  • Yield above given energy fraction
    [figures with right integral in the caption]

    Yield is defined as the integral above given energy fraction
    up to the maximum value of 1

Gamma candidate detector eta < 1.5
(eta region where we do have most of the TPC tracking):

  1. Cluster energy fraction in 0.7 radius
  2. 2x1 and 2x2 cluster energy fraction in 3x3 patch

Gamma candidate detector eta > 1.5:
(smaller tower size)

  1. Cluster energy fraction in 0.7 radius
  2. 2x1 and 2x2 cluster energy fraction in 3x3 patch

Some observation

  • For pre1>0 condition (contains most of events)
    yield in Monte-Carlo for eta > 1.5 case
    is about factor of two different than that from pp2006 data,
    while for eta < 1.5 Monte-Carlo yield agrees with data within 10-15%.
    This could be due to trigger effect?
  • For pre1=0 case yiled for both eta > 1.5 and eta < 1.5 are different in data and MC
    This could be due to migration of counts from pre1=0 to pre1>0
    in pp2006 data due to more material budget than it is Monte-Carlo
  • For pre1=0 condition pp2006 data shapes are not reproduced by gamma-jet Monte-Carlo.
    With a larger cluster size (2x1 -> 3x3) the pp2006 and MC gamma-jet shapes
    are getting closer to each other.
  • For pre1>0 condition (with statistics available),
    pp2006 data shapes are consistent with QCD Monte-Carlo.

 

Cluster energy fraction in 3x3 patch: detector eta > 1.5

Energy fraction from NxN cluster in 3x3 patch: detector eta > 1.5

Figure 1a: 2x1/3x3 energy fraction [number of counts per given fraction]

Figure 2a: 2x2/3x3 energy fraction [number of counts per given fraction]

Yield vs. NxN cluster energy fraction in 3x3 patch: detector eta > 1.5

Figure 4a: 2x1/3x3 energy fraction [yield]

Figure 5a: 2x2/3x3 energy fraction [yield]

2008.11.25 Yiled vs. analysis cuts: eta dependence

Ilya Selyuzhenkov November 25, 2008

Data sets:

Some observation

  • Fig. 1 [upper&lower left, 3rd bin] indicates that
    cluster energy isolation is the most important cut
    for signal/background separation
  • Fig.1 [lower right, 3rd bin] shows that
    R_cluster cut is independent from (or orthogonal to) other cuts
  • Fig.1 [upper&lower left 4th bin] shows that
    cut on neutral energy fraction for the away side jet
    rejects more signal that background events

    We probably need to reconsider that cut
  • Fig.2 [lower left, 5th bin] shows that
    charge particle veto significantly improves
    signal to background ratio
  • Fig.2 [lower right, 5th bin] shows that
    charge particle veto also independent from other cuts

  • Fig.3 [lower left, 5th bin] shows that
    in the region were we do not have TPC tracking (photon eta > 1.5)
    charge particle veto is not efficient
    ,
    although there is still some improvement from this cut.
    This probably due to tracks with eta <1.5
    which fall into large isolation radius r=0.7.

Yield vs. various analysis cuts

List of cuts (sorted according to bin number in Figs. 1-3. [No SMD sided residual cuts]):

  1. N_events : total number of di-jet events found by the jet-finder
  2. cos(phi_gamma - phi_jet) < -0.8 : gamma-jet opposite in phi
  3. R_{3x3cluster}: Energy in 3x3 cluster of EEMC tower to the total jet energy
    R_{3x3cluster}>0.9 for Fig. 1, and it is disabled in Fig. 2 and 3
  4. R_EM^jet < 0.9 : neutral energy fraction cut for on away side jet
  5. N_ch=0 : no charge tracks associated with a gamma candidate
  6. N_bTow = 0 : no barrel towers associated with a gamma candidate (gamma in the endcap)
  7. N_(5-strip cluster)^u > 2 : minimum number of strips in EEMC SMD u-plane cluster around peak
  8. N_(5-strip cluster)^v > 2 : minimum number of strips in EEMC SMD v-plane cluster around peak
  9. gamma-algo fail : my algorithm failed to match tower with SMD uv-intersection, etc...
  10. Tow:SMD match : SMD uv-intersection has a tower which is not in a 3x3 cluster

Figure 1: Number of accepted events vs. various analysis cuts
The starting number of events (shown in first bin of the plots) is
the number of di-jets with reconstructed gamma_pt>7 GeV and jet_pt>5 GeV
upper left: cuts applied independently
upper right: expept this cut fired
(event passed all other cuts and being rejected by this cut)
lower left: "cuts applied independently" normalized by the total number of events
lower right: "expept this cut fired" normalized by the total number of events

Figure 2: Same as Fig.1 except: no R_cluster cut and photon detector eta < 1.5
(eta region where we do have most of the TPC tracking)

Figure 3: Same as Fig.1 except: no R_cluster cut and photon detector eta > 1.5