Upsilon Analysis in p+p 2009

Upsilon cross-section in p+p collisions at sqrt(sNN) = 200 GeV, 2009 data.

PAs: Kurt Hill, Andrew Peterson, Gregory Wimsatt, Anthony Kesich, Rosi Reed, Manuel Calderon de la Barca Sanchez.

  • Dataset QA (Andrew Peterson)
    • Trigger ID, runs
    • Run by Run QA
    • Integrated Luminosity estimate
    • Systematic Uncertainty
  • Acceptance (Kurt Hill)
    • Raw pT, y distribution of Upsilon
    • Accepted pT, y distribution of Upsilons
    • Acceptance
    • Raw pT, eta distribution of e+,e- daughters
    • Accepted pT, eta distribution of e+,e- daughters
    • Comparison plots between single-electron embedding, Upsilon embedding
  • L0 Trigger
    • DSM-ADC Distribution (data, i.e. mainly background) (Drew)
    • DSM-ADC Distribution (Embedding) For accepted Upsilons, before and after L0 trigger selection
    • Systematic Uncertainty (Estimate of possible calibration and resolution systematic offsets).
    • "highest electron/positron Et" distribution from embedding (Accepted Upsilons, before and after L0 trigger selection)
  • L2 Trigger
    • E1 Cluster Et distribution (data, i.e. mainly background)
    • E1 Cluster Et distribution (embedding, L0 triggered, before and after all L2 trigger cuts)
    • L2 pair opening angle (cos theta) data (i.e.  mainly background)
    • L2 pair opening angle (cos theta) embedding. Needs map of (phi,eta)_MC to (phi,eta)_L2 from single electron embedding. Then a map from r1=(phi,eta, R_emc) to r1=(x,y,z) so that one can do cos(theta^L2) = r1.dot(r2)/(r1.mag()*r2.mag()). Plot cos theta distribution for L0 triggered events, before and after all L2 trigger cuts. (Kurt)
    • L2 pair invariant mass from data (i.e. mainly background)
    • L2 pair invariant mass from embedding. Needs simulation as for cos(theta), so that one can do m^2 = 2 * E1 * E2 * (1 - cos(theta)) where E1 and E2 are the L2 cluster energies. Plot the invariant mass distribution fro L0 triggered events, before and after all L2 trigger cuts. (Kurt)
  • PID (Greg)
    • dE/dx
      • dE/dx vs p for the Upsilon triggered data
      • nsigma_dE/dx calibration of means and sigmas
      • Cut optimization (Maximization of electron effective signal)
      • Final cuts for use in data analysis
    • E/p
      • E/p distributions for various p bins
      • Study of E calibration and resolution between data and embedding (for L0 Trigger systematic uncertainty)
      • Resolution and comparison with embedding (for cut efficiency estimation) (Kurt and Greg)
  • Yield extraction
    • Invariant mass distributions
      • Unlike-sign and Like-sign inv. mass (Drew)
      • Like-sign subtracted inv. mass (Drew)
      • Crystal-Ball shapes from embedding/simulation. (Kurt) Crystal-ball parameters to be used in fit (Drew)
    • Fit to Like-sign subtracted inv. mass, using CB, DY, b-bbar.
      • Contour plot (1sigma and 2sigma) of b-bbar cross section vs. DY cross section. (Drew)
      • Upsilon yield estimation and stat. + fit error. (Drew)
    • (2S+3S)/1S (Drew)
  • pT Spectra (Drew)
  • Cross section calculation.
    • Yield
    • Integrated luminosity
    • Efficiency (Numbers for each state, and cross-section-branching-ratio-weighted average)
    • Uncertainty
  • h+/h- Corrections

Upsilon Analysis in p+p 2009 - L0 Trigger

 

2009 BTOW Calibrations

L0 Trigger: Systematic Uncertainty

 

2009 BTOW Calibrations

Upsilon Analysis in p+p 2009 - PID

  • PID (Greg)
    • dE/dx
      • dE/dx vs p for the Upsilon triggered data
      • nsigma_dE/dx calibration of means and sigmas
        • Electron Mean: -0.263
        • Electron Width: - 1.016
        • Pion Width: 0.943
        • Hadron Width: 1.071
      • Cut optimization (Maximization of electron effective signal)
      • Final cuts for use in data analysis
    • E/p
      • E/p distributions for various p bins
      • Study of E calibration and resolution between data and embedding (for L0 Trigger systematic uncertainty)
      • Resolution and comparison with embedding (for cut efficiency estimation) (Kurt and Greg)

 

Upsilon Analysis in p+p 2009 - pT Spectra

Upsilon cross-section in p+p collisions at sqrt(sNN) = 200 GeV, 2009 data - pT Spectra

 

Note: All data plots are currently using -2 < nσe < 3 which is not optimized for this analysis!
Note: All data plots are using every run; run-by-run QA has not yet been completed!

 

  • pT Spectra (Drew)
    • first stab at pT Spectra of Upsilons from ee daughters with DY and bbbar subtracted
      • First stab at pT spectrum of Upsilons from ee daughters.  This does not have efficiency corrections yet.
      • DY and bbbar are "subtracted" by multiplying the bin by the ratio of Yeild(Upsilon)/Yeild(Upsilon+DY+bbbar).
        • The errors are added in quadrature, which is correct only to first order for this DY and bbbar "subtraction".
      • <pT> is just the mean of the bin, not the mean of the hits in the bin
        • Improvements on the way
  • pQCD Upsilon pT Spectra
    • p+p √S = 200 GeV
    • Pythia 8.1.53 with the following cuts:
      • Upsilon -> ee pair
        • Can only detect this decay channel
      • Ee1 > 4.0 GeV, Ee2 > 2.5 GeV
        • L2 trigger
          • need to verify the actual trigger.. changed from 2006 to 2008/9
      • e1| < 0.5, |ηe2| < 0.5
        • mid-rapidity
      • cos(θe1e2) < 0.5
        • Ensure the electrons are roughly back-to-back
      • pT e1 > 200 MeV, pT e2 > 200 MeV
      • 2.5 M p+p->bbbar events for each pTHatMin
      • 1 GeV <= pTHatMin <= 10 GeV in steps of 0.10 GeV
        • Boosts the statistics of less likely collisions
        • Stacked histograms together
          • normalization factor: (cross section at X GeV) / (cross section at 1.0 GeV)
      • First bin is basically divided by 0 and is cutoff

 

Upsilon Analysis in p+p 2009 data - Acceptance

  • Acceptance (Kurt Hill)  -  Upsilon acceptance aproximated using a simulation that constructs Upsilons (flat in pT and y), lets them decay to e+e- pairs in the Upsilon's rest frame, and uses detector response functions generated from a single electron embedding to model detector effects.  An in depth study of this method will also be included.
    • Raw pT, y distribution of Upsilon
    • Accepted pT, y distribution of Upsilons
    • Acceptance
    • Raw pT, eta distribution of e+,e- daughters
    • Accepted pT, eta distribution of e+,e- daughters
    • Comparison plots between single-electron embedding, Upsilon embedding

Upsilon Analysis in p+p 2009 data - Acceptance

  • Acceptance (Kurt Hill)
    • Raw pT, y distribution of Upsilon
    • Accepted pT, y distribution of Upsilons
    • Acceptance
    • Raw pT, eta distribution of e+,e- daughters
    • Accepted pT, eta distribution of e+,e- daughters
    • Comparison plots between single-electron embedding, Upsilon embedding

Upsilon Analysis in p+p 2009 data - Dataset QA

  • Dataset QA (Andrew Peterson)
    • Trigger ID, runs
      • Name
        Trigger id
        Lum [pb-1]
        P4 L [pb-1]
        Nevents [M]
        First Run
        Last Run
        Description
        Stream
      • Upsilon 22.855 1.978 1.381 10114071 10180030 Upsilon, reading ETOW BTOW TOF ESMD TPX BSMD upsilon
        Upsilon 240640 1.293 0.105 0.049 10114071 10117052 Broken, do not use upsilon
        Upsilon 240641 21.563 1.873 1.331 10117085 10180030 18 (4.3 GeV) < BHT && BBCMB && Upsilon at L2 upsilon
    • Run by Run QA
        • X-Axis is scaled because ROOT seemed to not want to fit anything that small
        • Z-Axis on first 2 and Y-Axis on second 2 are weighted by 1/(error on trigger ratio)
        • Once I have completed going through the run logs to throw out bad runs on that alone I will fit with Gaussians and keep up to 3 sigma
      • Runs thrown out:
        • 0 Magnetic Field (how did this even get flagged for Upsilon?)
          • 10172027
          • Δ Integrated Luminocity: 0.024188 pb-1
        • Fewer than 10,000 events in run
          • 10131011, 10137047, 10142045, 10143046, 10144033, 10144097, 10169015, 10172086 , 10173054
          • Δ Integrated Luminocity: 0.000276 pb-1
        • Marked as "bad" in the shift log
          • 10127044, 10128037, 10128051, 10128064, 10155017
          • Δ Integrated Luminocity: 4e-06 pb-1
            • Note: only 10127044 was presnet in the Luminocity files from Jamie
               
    • Integrated Luminosity estimate: 21.539 pb-1
    • Systematic Uncertainty

 

Upsilon analysis in p+p 2009 - Yield Extraction

Upsilon cross-section in p+p collisions at sqrt(sNN) = 200 GeV, 2009 data - Yield Extraction

 

Note: All plots are currently using -1.8 < nσe < 3 which is not optimized for this analysis!
Note: All plots are using every run using Trigger ID 240641; run-by-run QA has not yet been completed or implemented!

 

  • Invariant mass distributions
    • Unlike-sign and Like-sign inv. mass (Drew)
    • Like-sign subtracted inv. mass (Drew)
      • Fit is from 5 GeV/c2 to 16 GeV/c2
    • Crystal-Ball shapes from embedding/simulation. (Kurt)
    • 0<pt<10 & 0<|y|<1

      Param 1S 2S 3S
      alpha 1.21 1.21 1.27
      n 1.85 1.96 1.89
      mu 9.46 10.02 10.35
      sigma 0.124 0.145 0.154
    •  0<pt<10 & 0<|y|<0.5
      Param 1S 2S 3S
      alpha 1.18 1.16 1.21
      n 1.83 2.06 2.04
      mu 9.46 10.02 10.35
      sigma 0.125 0.143 0.150

      0<pt<10 & 0.5<|y|<1

    • Param 1S 2S 3S
      alpha 1.21 1.21 1.27
      n 1.85 1.96 1.89
      mu 9.46 10.02 10.35
      sigma 0.124 0.145 0.154
    • 0<pt<2 & 0<|y|<0.5
    • Param 1S 2S 3S
      alpha 1.30 1.43 1.12
      n 1.81 1.65 2.78
      mu 9.46 10.02 10.35
      sigma 0.119 0.139 0.141
    • 0<pt<2 & 0.5<|y|<1
    • Param 1S 2S 3S
      alpha 1.72 1.53 1.25
      n 1.23 1.86 2.37
      mu 9.46 10.02 10.35
      sigma 0.141 0.151 0.163
    • 2<pt<4 & 0<|y|<0.5
    • Param 1S 2S 3S
      alpha 1.30 1.14 1.31
      n 1.72 2.12 1.85
      mu 9.46 10.02 10.35
      sigma 0.126 0.134 0.155

      2<pt<4 & 0.5<|y|<1

    • Param 1S 2S 3S
      alpha 1.59 1.25 1.65
      n 1.52 2.13 1.23
      mu 9.46 10.02 10.35
      sigma 0.135 0.139 0.159
    • 4<pt<6 & 0<|y|<0.5
    • Param 1S 2S 3S
      alpha 1.11 1.22 1.30
      n 1.97 2.17 2.07
      mu 9.46 10.02 10.35
      sigma 0.117 0.152 0.155
    • 4<pt<6 & 0.5<|y|<1
    • Param 1S 2S 3S
      alpha 1.17 1.60 1.30
      n 2.20 1.46 1.66
      mu 9.46 10.02 10.35
      sigma 0.136 0.179 0.162
    • 6<pt<8 & 0<|y|<0.5
    • Param 1S 2S 3S
      alpha 1.08 1.11 .984
      n 2.07 2.18 2.82
      mu 9.46 10.02 10.35
      sigma 0.138 0.154 0.154
    • 6<pt<8 & 0.5<|y|<1
    • Param 1S 2S 3S
      alpha 1.06 1.22 1.03
      n 2.16 2.16 2.75
      mu 9.46 10.02 10.35
      sigma 0.133 0.166 0.165
    • 0<pt<2 & 0<|y|<1
    • Param 1S 2S 3S
      alpha 1.39 1.46 1.18
      n 1.66 1.63 2.42
      mu 9.46 10.02 10.35
      sigma 0.124 0.142 0.146
    • 2<pt<4 & 0<|y|<1
    • Param 1S 2S 3S
      alpha 1.33 1.16 1.35
      n 1.72 2.10 1.78
      mu 9.46 10.02 10.35
      sigma 0.128 0.135 0.152
    • 4<pt<6 & 0<|y|<1
    • Param 1S 2S 3S
      alpha 1.10 1.25 1.32
      n 2.06 1.90 1.93
      mu 9.46 10.02 10.35
      sigma 0.121 0.157 0.157
    • 6<pt<8 & 0<|y|<1
    • Param 1S 2S 3S
      alpha 1.08 1.25 1.00
      n 2.06 2.18 2.71
      mu 9.46 10.02 10.35
      sigma 0.138 0.156 0.156
    • Crystal-ball parameters to be used in fit (Drew)
  • Fit to Like-sign subtracted inv. mass, using CB, DY, b-bbar.
    • Contour plot (1sigma and 2sigma) of b-bbar cross section vs. DY cross section. (Drew)
        • This plot is flawed -- using 2006 background fit and integrated luminocity
    • Upsilon yield estimation and stat. + fit error. (Drew)
  • (2S+3S)/1S
    • Method 1
      • Fix the 1S, 2S, and 3S to PDG ratios
      • f = (CB1 + (CB2+CB3)*B ) / N
      • B = (pp2009 2S+3S) / (PDG 2S+3S)
    • Method 2
      • Fix the 1S, 2S, and 3S to PDG ratios
      • f = (CB1 + CB2*B2 + CB3*B3) / N
      • Need to think more about what B2 and B3 are
        • B2 = pp2009(2S / 1S)?
        • B3 = pp2009(3S / 1S)?

 

Upsilon cross-section in p+p collisions at sqrt(sNN) = 200 GeV, 2009 data - h+/h-

h+/h-: Comparison Between the Reproduction vs the Original Production

~10% of the 2009 p+p 200 GeV was reproduced (http://www.star.bnl.gov/public/comp/prod/prodsum/production2009_200Gev_Single.P11id.html). We ran over the available Upsilon stream reproduction and compared with the results from the original production. The reproduction was generally found to have a different index for each set of electron pairs, so the following cuts were used to match Upsilon candidates:

Same Run ID and Event ID

|Delta Vz| < 1.0 cm

 

 

 

Same Charge (daughter 1 reproduction = daughter 1 original production, daughter 2 reproduction = daughter 2 original production)

 

-1.29 < nSigmaElectron 3.0 (used in the analysis for the original production)

We projected the m_{old} over the range of 8 to 11 GeV to see the effect on the Upsilon candidate:

 

There is a smearing of mass, ~1/3 GeV, with the reproduction compared to the original production. We specifically chose the 8 < m_{old} < 11 GeV/c^2 range to see how the Upsilons would be affected for a cross section measurement.