1) To work with the physics working group convenors and as appropriate the Software and Computing Project Leader, Simulations Leader, Reconstruction Software Leader, Offline Production Leader, Software Infrastructure Leader, and Run-Time Committee to determine the physics analysis and simulation software needs. To act as an interface between the physics working group convenors and the STAR Software and Computing Project on matters of physics software and computing and consult as needed with the Spokesperson on priorities for this software.
2) To work with the physics working group convenors and the STAR Software Project Leaders to faciliate the development and integration of physics analysis software in a way that is compatible with the overall STAR software approach. In so doing, the quality and performance of the reconstruction and simulation codes should be primary considerations.
3) To represent the physics working groups in discussions, with the software project leaders, on the physics analysis tasks to be performed during event reconstruction and at each stage of analysis. This will require that the physics analysis coordinator maintain an overall perspective of the status and availability of physics analysis and simulation software.
4) To facilitate input and communication between the physics working groups and the Simulations Leader on issues of determining and implementing the tradeoffs in the simulation capability versus physics.
5) To work with the Simulations Leader to make efficient use of the computing resources for the simulations needed by each of the physics working groups and to coordinate the physics working groups' input on design tradeoffs in the simulations with respect to general performance and overall capabilities.
6) To work with the Reconstruction Leader to establish requirements for DSTs and event reconstruction functionality.
1. well versed in STAR's physics program with a strong interest in physics, software and computing.
2. active in physics analysis, as an active developer and user of analysis codes.
3. strong in computing, able and willing to be an active participant in the computing group designing and developing the analysis software and the computing framework that supports it, and able to assess the quality and approach of the upstream reconstruction and simulation codes and give feedback.
4. direct experience in OO/C++ prefered.
5. be able to communicate well.
6. be able to commit a large fraction of time to this job and to have a presence at BNL as needed to interface with the software project leaders and the physics working group convenors.
Torre's statement on the job:
"A principal early role of the physics analysis coordinator would be to help assemble the physics analysis program for the mock data challenges, going well beyond the broad strokes of what physics should be looked at to developing the program to put in place the physics analysis software needed to execute it, software layered over a physics analysis infrastructure and toolset that the Analysis Coordinator should play a strong role in designing and ideally developing. Besides assembling the disparate needs of the PWGs to scope out and assign the design and implementation job, there is a lot of commonality in their needs that needs to be coordinated."