

Measurement of Λ ($\overline{\Lambda}$) hyperons' local spin polarization in Au+Au collisions from the RHIC Beam Energy Scan-II

Qiang HU (for the STAR Collaboration)

Outline

➢Introduction

STAR Detector at RHIC

Measurement of Local Spin Polarization

- Event Plane Reconstruction
- Polarization Extraction
- Λ 's Local Polarization
- Baryonic Spin Hall Effect
- Summary and Outlook

Introduction

Global Polarization

→Help to understand the vortical nature of the QCD matter →Potential to investigate the late-stage magnetic field sustained by the QGP (splitting between $P_H(\Lambda)$ and $P_H(\overline{\Lambda})$)

Hyperons: parity-violating weak decay, "self-analyzing" Daughter baryon distribution in hyperon's rest frame:

$$\frac{dN}{d\Omega^*} \propto 1 + \alpha_{\rm H} P_{\rm H} \cos\theta^*$$

Experiment observable:
$$P_{\rm H} = \frac{8}{\pi \alpha_{\rm H}} \frac{1}{R_{EP}^{(1)}} \langle \sin(\psi_1 - \phi_B^*) \rangle$$

Also denoted as: $P_{\rm y} = \frac{8}{\pi \alpha_{\rm H}} \frac{1}{R_{EP}^{(1)}} \langle \sin(\psi_1 - \phi_B^*) \rangle$

Sun Xu et al., Acta Phys. Sin. 72(7), 072401 (2023)

Significant energy dependence of Λ global polarization
Hints of splitting between P_H(Λ) and P_H(Λ̄)

 Ω^* : solid angle

- θ^* : the angle between daughter proton momentum and hyperon polarization vector in hyperon rest frame
- $\alpha_{\rm H}$: hyperon's decay parameter
- $\psi_1 : \texttt{1}^{st} \text{ order event-plane angle}$
- ϕ_B^* : the azimuthal angle of the daughter baryon in hyperon rest frame
- P_H : hyperon polarization

Z. –T. Liang and X. –N. Wang Phys. Rev. Lett. 94, 102301 (2005); erratum 96, 039901

Local Spin Polarization P,

Local Spin Polarization P_z

New developments, Shear Induced Polarization (SIP) can capture the trend

胡强-中国科学院近代物理研究所

What is Spin Hall Effect (SHE)?

Edwin Herbert Hall (1855-1938)

S. Meyer et al., Nature Materials, 2017

Mikhail I. Dyakonov

SHE: spin imbalance (2004)

Vladimir I. Perel

Spin Hall Effect

1971: predicted by Mikhail I. Dyakonov and Vladimir I. Perel 30 years later, it was observed in semiconductors (Y. K. Kato et al., Science 306,1910(2004))

"Spin-orbit" interaction

Baryonic Spin Hall Effect

QCD matter $P \propto \pm p \times \nabla \mu_B$

Polarization ~ $\nabla T \oplus \text{Shear} \oplus \nabla \mu_B$

Model prediction:

- Monotonic energy dependence of net local polarization of $P_{2,z}^{net}$
- Sign of $P_{2,z}^{net}$ is opposite with and without SHE at BES energies

In heavy-ion collisions:

New proposal of probing spin Hall effect driven by baryon chemical potential gradient $(\nabla \mu_B)$ via local Λ polarization

S. Y. F. Liu, Phys.Rev.D 104, 054043 (2021) B. Fu, S. Liu et al. PRL 127, 142301 (2021) B. Fu et al., arXiv:2201.12970v1

New proposal of probing baryonic spin Hall effect in heavy-ion collisions via local Λ polarization !

胡强-中国科学院近代物理研究所

The STAR Detector

TPC: Time Projection Chamber (PID & Event plane reconstruction

 $\rightarrow \Psi_2$)

TOF: Time Of Flight \rightarrow PID

EPD: Event Plane Detector (Event plane reconstruction $\rightarrow \Psi_1$),

 $|\eta| \in [2.1, 5.1]$

High statistics from BES-II

 \rightarrow opportunity to measure polarization of Λ

precisely over a wide energy range

Measurement of Local Spin Polarization

Event Plane Resolution

Polarization Extraction

 $= -\theta_p^*$

Beam direction (z)

 $\vec{L} = \vec{b} \times \vec{p}_{beam}$

 $-\phi_p^*$

 ϕ_p^* : azimuthal angle of the daughter (anti)proton in Λ 's rest frame

A's Local Polarization $P_{2,z}$ vs Centrality

• No significant centrality dependence of P_{2,z} within uncertainties

A's Local Polarization $P_{2,z(y)}$ vs Energy

Baryonic Spin Hall Effect

Summary

- Local polarization of Λ and Λ in Au+Au collisions at 7.7, 9.2, 11.5, 14.6, 19.6, 27 GeV (BES-II)
 - First observation of energy dependence of $\Lambda P_{2,y}$ ($\mu_B \uparrow, P_H \uparrow$)
 - No strong energy dependence of Λ hyperons $P_{2,z}$
 - First search of baryonic spin hall effect in heavy ion collision

Outlook

Local polarization of Λ hyperons from STAR Fixed-Target energies ($\sqrt{s_{NN}} = 3.0 - 7.7$ GeV) is ongoing

Thank you for your attention !

