

Dileptons and direct photons in heavy-ion collisions at STAR

Chi Yang 杨驰 (For the STAR Collaboration) Shandong University 山东大学

- Introduction
- Dilepton results
- ✓ Direct photon results
- Summary and outlook

STAR 🛧 Electromagnetic probes in HIC

Dileptons and real photons —— ideal electromagnetic probes

- ✓ Suffer no strong interaction
- ✓ Produced at all stages of the system evolution
- Bring production information to final state
- ✓ Sensitive to electromagnetic processes

STAR * Relativistic Heavy Ion Collider

Located in Brookhaven National Laboratory, Upton, New York, USA

2018/12/05

Chi Yang, NN 2018, Saitama, Japan, Dec.4th - 8th

Located in Brookhaven National Laboratory, Upton, New York, USA

2018/12/05

Chi Yang, NN 2018, Saitama, Japan, Dec.4th – 8th

STAR * The current STAR detector layout

Large acceptance, good particle identification Plenty of interesting physics results over years

2018/12/05

Chi Yang, NN 2018, Saitama, Japan, Dec.4th - 8th

STAR * Ongoing detector upgrades

2018/12/05

Chi Yang, NN 2018, Saitama, Japan, Dec.4th - 8th

Dileptons

Higher M_{II} -> Earlier produced

Low Mass Region (<1.1 GeV/c²):

- vector meson in-medium modification
- Ink to chiral symmetry restoration

Intermediate Mass Region (1.1-3.0 GeV/c²):

- ✓ thermal probe of QGP $dN/dm_{\parallel} \sim e^{-m/T}$
 - dominant contribution from semi-leptonic decays

High Mass Region (>3.0 GeV/c²)

- ✓ Primordial emission
- Drell-Yan process
- ✓ J/ ψ and Upsilon

STAR 🖈 Dilepton in p+p – baseline

- \checkmark In p+p collisions, the data are **consistent with vacuum ρ** distribution
- ✓ Hadronic cocktail simultaneously describe data at all mass regions
- Consistent with our understanding for p+p collisions no "hot" contribution
- ✓ Cocktail simulation can be trusted

STAR A Dielectron in heavy-ion collisions

Au+Au 19.6GeV

Au+Au 200GeV

✓ In ρ -like region, clear excesses are observed from RHIC top energy to low energy ✓ **Consistent with** ρ **broadening scenario**

STAR 🛧 Dielectron in Beam Energy Scan Phase I

STAR, arXiv:1810.10159

 $\checkmark\,$ Low mass excesses are consistent with ρ broadening scenario within uncertainties

✓ Low-mass e⁺e⁻ emission is affected by T, total baryon density, lifetime

STAR * Future in Beam Energy Scan Phase II

BES-II:

In 2019-2021, scan from 19.6 GeV down to 7.7 GeV Au+Au.

Detector upgrades will reduce the systematic uncertainties and extend the acceptance.

Current measurements:

- $\checkmark~$ Excess yield normalized by dN_{ch}/dy might be proportional to the lifetime of the medium
- ✓ Constant excess along constant total baryon density
- In BES-II:

More clear pictures of the excesses versus lifetime and total baryon density

Photon-photon and photon-nucleon interaction -

from Ultra-Peripheral Collisions (UPC) to Hadronic Heavy Ion Collisions (HHIC)

Coherent:

STAR 🖈

- ✓ Emitted photon/pomeron interacts with the nucleus as a whole
- ✓ Strong coupling results in large cross sections
- ✓ Photon wavelength $\lambda = h/p > R_A$
- ✓ $p_T < h/R_A \sim 30$ MeV/c for heavy ions
- ✓ No overlapping for two colliding nuclei

STAR * Coherent low p_T e⁺e⁻ in Au+Au and U+U

STAR, PRL, 121 (2018) 132301

- ✓ Significant enhancement
- ✓ Excesses concentrate below $p_T \approx 0.15$ GeV/c
- ✓ Data are consistent with hadronic expectation when $p_T > 0.15$ GeV/c

STAR \bigstar Coherent low p_T e⁺e⁻ in Au+Au and U+U

STAR, PRL, 121 (2018) 132301

- Coherent photon-photon and photon-nucleon interaction in HHIC!
- A new topic in dilepton analysis, challenge to theory on the understanding of coherent photon-photon and photon-nucleon interactions
- ✓ May also be observed in dimuon channel

p_T^2 distribution for low p_T dielectron

- ✓ Initial produced dilepton tracks can be bent by the magnetic field
- ✓ The effect is large enough to see, if magnetic field last long (trapped in QGP)
- ✓ Theoretical calculation with magnetic field effect matches data better

The model assumes that all the e^+e^- pairs traverse 1 fm through a magnetic field of 10^{14} T perpendicular to the beam line, the net effect of this approach is like $\int eB(t)cdt = e\overline{B}L = 30 \text{ MeV}/c$ for one track

2018/12/05

STAR 🖈

Chi Yang, NN 2018, Saitama, Japan, Dec.4th - 8th

Direct photons

Direct photons:

all photons which DO NOT come from hadron decay

Unique probe:

- ✓ Charge neutral
- \checkmark Can probe the whole time evolution

Higher p_T -> Earlier produced

- \checkmark high p_T : initial hard scattering
- ✓ low p_T : QGP thermal + hadron gas

STAR * e⁺e⁻ pairs from internal conversion

• Relation between real photon yield and the associated e⁺e⁻ pairs:

2018/12/05

Two-component fitting on dielectron continuum

STAR, PLB, 770 (2017) 451-458

STAR 🛧

Direct photon yield

STAR, PLB, 770 (2017) 451-458

$$\frac{2\alpha dN_{\gamma}^{dir}(p_T)}{3\pi M_{ee} dp_T} = rF_{dir} \frac{1}{M_{ee}},$$
$$\frac{d^2 N_{\gamma}^{dir}(p_T)}{2\pi p_T dp_T dy} = \frac{3rF_{dir}}{4\alpha p_T dy} = r\frac{d^2 N_{\gamma}^{inc}(p_T)}{2\pi p_T dp_T dy}$$

 F_{dir} : f_{dir} normalization factor

Thermal photons can be observed

Compared to p+p reference (from PHENIX collaboration)

STAR Comparison to model calculations

STAR, PLB, 770 (2017) 451-458

Model predictions considering:

- thermal radiation
- in-medium ρ meson
- other mesonic interactions in the hadronic gas
- primordial contributions from the initial hard parton scattering

Model calculations:

- ✓ Consistent with the yield within uncertainties except some bins in 60-80%
- ✓ Simultaneously describe both dielectron and direct photon yields

Summary and outlook

Electromagnetic probes provide unique ways to study the hot and dense medium over the whole evolution:

Dilepton – rho broadening scenario describes the excesses in LMR

- ✓ Measurements from RHIC top energy down to 19.6 GeV
- Coherent low p_T dielectron production joins dilepton "club" may link to EM field

Direct photons – thermal photons observed in Au+Au collisions

 Model calculations simultaneously describe both dielectron and direct photon results

Current and future opportunities:

STAR 🛧

1.2 B Au+Au 54 GeV and 1.5 B Au+Au 27 GeV data collected in Run17

✓ Smaller heavy flavor semi-leptonic decay in IMR

3.1 B isobaric collision data collected in Run18

✓ Same A, different Z – similar hadronic interaction, different initial magnetic field

BES-II in Run 19 and Run 20

✓ Different total baryon densities, scan on "critical" region

The analyses on EM probes such as dileptons and direct photons will be further studied on these different collision species.