

Selected highlights from STAR experiment at RHIC

Michal Šumbera Nuclear Physics Institute AS CR, Řež/Prague (for the STAR Collaboration)

Relativistic Heavy Ion Collider (RHIC) Brookhaven National Laboratory (BNL), Upton, NY

Animation M. Lisa World's (second) largest operational heavy-ion collider World's largest polarized proton collider

	Year	System	√s _{NN} [GeV]	
	2000	Au+Au	130	
	2001	Au+Au	200	and a second
	2002	p+p	200	
	2003	d+Au	200	
	2004	Au+Au p+p	62.4 200	Contraction of the second seco
	2005	Cu+Cu	200, 62.4, 22	s/sec
	2006	p+p	62.4 <i>,</i> 200, <mark>500</mark>	
	2007	Au+Au	200	
	2008	d+Au p+p Au+Au	200 200 9.2	
	2009	p+p	200, 500	
Wc 12/6/10	2010	Au+Au	200, 62.4, 39, 11.5, 7.7	nimation M. Lisa er 4

Remarkable discoveries at RHIC

The first six years

- A+A collisions
 - Perfect liquid
 - Jet quenching
 - Number of constituent quark scaling
 - Heavy-quark suppression
- Polarized p+p collisions
 - Large transverse spin asymmetries in the pQCD regime
- d+A collisions
 - Possible indications of gluon saturation at small x

Key unanswered questions

- What are the properties of the strongly coupled system produced at RHIC, and how does it thermalize?
- What is the phase structure of QCD matter?
- What is the mechanism for partonic energy loss?
- What exotic particles are created at RHIC?
- Does QCD matter demonstrate novel symmetry properties?
- What is the partonic spin structure of the proton?
- What are the dynamical origins of spin-dependent interactions in hadronic collisions?
- What is the nature of the initial state in nuclear collisions?

Due to length limitations, will only cover three of these in my talk

STAR results in this talk

Polarized *p+p* program

- Study proton intrinsic properties

STAR

1) At 200 GeV top energy

- Study *medium properties, EoS*
- pQCD in hot and dense medium

2) RHIC beam energy scan

- Search for the QCD critical point
- Chiral symmetry restoration

12/6/10

Exotic systems created in nuclear collisions

- antihypernuclei etc.

M.S. Highlights from STAR

STAR Detector

G. Bunce et al., Prospects for spin physics at RHIC, Ann.Rev.Nucl.Part.Sci. 50(2000)525

12/6/10

Polarized *p+p* program

- Study proton intrinsic properties

Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at $\sqrt{s} = 200$ GeV. Phys. Rev. D 80 (2009) 111108

Forward Neutral Pion Transverse Single Spin Asymmetries in p+p Collisions at √s = 200 GeV. Phys. Rev. Lett. 101 (2008) 222001

Longitudinal double-spin asymmetry for inclusive jet production in p + p collisions at \sqrt{s} = 200 GeV. Phys. Rev. Lett. 100 (2008) 232003

Measurement of Transverse Single-Spin Asymmetries for Di-Jet Production in Proton-ProtonCollisions $\sqrt{s} = 200$ GeV.Phys. Rev. Lett. 99 (2007) 142003

Longitudinal Double-Spin Asymmetry and Cross Section for Inclusive Jet Production in Polarized Proton Collisions at at \sqrt{s} = 200 GeV. Phys. Rev. Lett. 97 (2006) 252001

Highlights from STAR

Where does the proton's spin come from?

p is made of 2**u** and 1**d** quark

 $S = \frac{1}{2} = \sum S_q$

 ✓ Explains magnetic moment of baryon octet

BUT partons have an x distribution and there are also sea quarks and gluons

d

Check via electron scattering and find quarks carry only ~1/4-1/3 of the proton's spin! => <u>SPIN CRISIS</u>

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_q$

ets.pions

First Collider of Polarized Hadrons

- Spin varies from rf bucket to rf bucket (9.4 MHz)
- Spin pattern changes from fill to fill
- Spin rotators provide choice of spin orientation
- Billions of spin reversals during a fill with little if any depolarization

Asymmetry in the sea quarks: W program

Global analysis predicts positive net helicity difference

12

12/6/10

$$\begin{array}{rccc} u + \bar{d} & \to & W^+ \to e^+ + \nu \\ \bar{u} + d & \to & W^- \to e + \bar{\nu} \end{array}$$

•Measure the parity-violating, single-spin helicity asymmetry

$$A_L = \frac{\overrightarrow{\sigma} - \overleftarrow{\sigma}}{\overrightarrow{\sigma} + \overleftarrow{\sigma}}$$

•where at LO:

ę

$$A_L^{W^+} \propto -\Delta u(x_1)\overline{d}(x_2) + \Delta \overline{d}(x_1)u(x_2)$$
$$A_L^{W^-} \propto -\Delta d(x_1)\overline{u}(x_2) + \Delta \overline{u}(x_1)d(x_2)$$

STAR

Predictions for A_{L} for $p+p \rightarrow W$

STAR

W selection: monojets

What we want to accept

What we want to reject

Look for the electron-type events with no energy/momentum on the away side

W⁺/W⁻ charge separation in TPC

STAR, <u>arXiv:1009.0326v2</u> [hep-ex] A₁ (W⁺) = -0.27 ± 0.10 (stat.) ± 0.02 (syst.)± 0.03 (norm.) A₁ (W⁻) = +0.14 ± 0.19 (stat.) ± 0.02 (syst.)± 0.01 (norm.) A_L $\vec{p} + p \rightarrow W^{\pm} + X \rightarrow e^{\pm} + X$ 0.4 STAR $\sqrt{s} = 500 \text{ GeV}$ $25 < E_T^{e} < 50 \text{ GeV}$ 0.3 0.2 0.1 0 RHICBOS DNS-K -0.1DNS-KKP DSSV08 CHE -0.2DSSV08 -0.3 F W^+ -0.4Syst. uncertainty due to background. w/o pol. norm. uncertainty of 9.2% 2 -2-10 η_e

✓ A_L(W⁺) < 0, as predicted, ~3σ
✓ A_L(W⁻) central value > 0, as expected
✓ systematic errors of A_L under control
✓ TPC charge separation works up to E_T~50 GeV

18

1) At 200 GeV top energy

- Study *medium properties, EoS*
- pQCD in hot and dense medium

Hard parton scattering

Jet-medium interactions

- Probing the medium
- How to spot?
 - Correlations and hadron distributions High p_{T} spectra and R_{AA} Triggered and inclusive correlations: pp vs. AA
 - Reconstructed jets Cross-sections and $R_{\Delta\Delta}^{Jet}$ Shape modifications (broadening) Jet-jet, hadron-jet correlations

hadrons

eading particle

p+p collisions and pQCD at RHIC

STAR : PRL 97 (2006) 252001 10⁸ (a)10⁷ Ē STAR $p+p \rightarrow jet + X$ 1/2π d^č/(dηdpT) [pb/GeV] 0 0 0 0 0 0 0 0 0 √s=200 GeV midpoint-cone r_{cone}=0.4 0.2<n<0.8 10² Combined MB 10 ≣ Combined HT NLO QCD (Vogelsang) 1 ≣ data / theory 1.4 1.0 0.0 0 0 Systematic Uncertainty (b): Theory Scale Uncertainty 0.2 30 50 10 20 40 p_T [GeV/c]

Jet production well explained by NLO pQCD calculations

High p_T particle production well explained by NLO pQCD calculations

12/6/10

p+p collisions and pQCD at RHIC

SPIN-2010: Matt Walker *for the collaboration*

- ♦ Unpolarized differential cross section 24< M_{JJ} <100 (GeV/c²)
- NLO theory predictions using CTEQ6M with and without corrections for hadronization and underlying event from PYTHIA
- ♦ Statistical uncertainties as lines, systematics as rectangles
- Dijet production well explained by NLO pQCD calculations

Jet quenching: the discovery

\star High p_T hadron suppression:

- Final state effect in Au+Au collisions
- Observation extends to all accessible p_T range

★ Two-particle correlation result:

- "Disappearance" of the awayside high- p_T particle in central Au+Au collisions (for hadrons $p_T^{assoc} > 2 \ GeV/c$)
- Effect not present in peripheral/d+Au collisions

Di-hadron correlations: p_T dependence $\sqrt{s_T A R}$

Higher associate p₁

23

Di-hadron correlations: p_T dependence

Higher associate ק

24

A closer look at near-side

STAR

Full jet reconstruction

- High p_T hadrons bias towards non-interacting jets
- Full jet reconstruction reduces the bias
- Hadronization
- Very complex due to underlying event
- Algorithmic biases
- Data driven correction schemes

TAR

Nuclear modification factor and jet energy profile

2) RHIC beam energy scan

- Search for the **QCD critical point**
- Chiral symmetry restoration

STAR Collaboration:

An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement

arXiv:1007.2613v1 [nucl-ex]

The QCD Critical Point

- Lattice Gauge Theory (LGT) prediction on the transition temperature T_c is robust.

- LGT calculation, universality, and models hinted the existence of the critical point on the QCD phase diagram* at finite baryon chemical potential.

- Experimental evidence for either the critical point or 1st order transition is important for our knowledge of the QCD phase diagram*.

* Thermalization has been assumed

M. Stephanov, K. Rajagopal, and E. Shuryak, PRL 81, 4816(98); K. Rajagopal, PR D61, 105017 (00)

http://www.er.doe.gov/np/nsac/docs/Nuclear-Science.Low-Res.pdf

Maximum Baryon Density

The maximum baryon density at freeze-out expected for √s_{NN}≈6-8 GeV

Maximum Baryon Density

The maximum baryon density at freeze-out expected for √s_{NN}≈6-8 GeV

STAR Uniform Acceptance over all RHIC Energies

Crucial for all analyses

Au+Au at 39 GeV

Au+Au at 200 GeV

M.Š. Highlights from STAR

Collectivity

Collectivity at Partonic Stage STAR

M.Š. Highlights from STAR

34

Azimuthal Anisotropy: v₂

STAR

Azimuthal Anisotropy: v₁

$$v_1 = \langle \cos(\phi - \Psi_r) \rangle, \ \phi = \tan^{-1}(\frac{p_y}{p_x})$$

 $v_1(y)$ is sensitive to baryon transport, space - momentum correlations and QGP formation

- Forward rapidity v₁: energy dependence, no N_{part} dependence
- Model calculations show **both** beam energy and system size dependence!

Azimuthal Anisotropy: v₁

STAR

12/6/10

Exotic systems created in nuclear collisions

- antihypernuclei etc.

Hypernucleus = Nucleus containing Arrange at least one hyperon

The first hypernucleus was discovered by Danysz and Pniewski in 1952. It was formed in a cosmic ray interaction in a balloon-flown emulsion plate. *M. Danysz and J. Pniewski, <u>Phil. Mag. 44 (1953) 348</u>*

Until recently <u>anti-hypernucleus</u> was never observed experimentally

- Y-N interaction: a good window to understand the baryon potential
- Binding energy and lifetime are very sensitive to Y-N interactions
- Hypertriton:∆B=130±50 keV; r~10fm
- Production rate via coalescence at RHIC depends on overlapping wave functions of n+p+Λ in the final state
- Important first step for searching for other exotic hypernuclei (double- Λ).

From Hypernuclei to Neutron Stars

- *Single* and *double* hypernuclei in the laboratory:
 - study the strange sector of the B-B interaction
 - provide info on EOS of neutron stars
- Extension of the nuclear chart into anti-matter with S^[1] [1] W. Greiner, <u>Int. J. Mod. Phys. E 5 (1995) 1</u> M.Š. Highlights from STAR

J.M. Lattimer and M. Prakash, *The Physics of Neutron Stars*, Science 304, 536 (2004) J. Schaffner and I. Mishustin, *Hyperon-rich matter in neutron stars*, Phys. Rev. C 53 (1996)

STAR Discovery of Anti-Strange Matter В 140 <dE/dx> (KeV/cm) 30 Signal counts: 70±17 Expected <dE/dx> Mass: 2991±1±2 MeV 120 ³Не 20 Width: 2.5 MeV 100 Counts 80 10 60 signal candidates Ο 0 40 n 3 rotated background Rigidity (GeV/c) 20 signal+background fit n 2.95 3.05 3 3.1 400 ˈrigidity>1 GeV/c 🙀 Counts ³He ³He + π^+ Invariant mass (GeV/c²) 300 ^o ³He 200 $c\tau = 5.5 \pm \frac{2.7}{cm}$ - 1 08 100 τ_{A} = 267±5 ps = 0.08Count 0.4 $PDG = 263 \pm 2 \text{ ps}$ -0.2 0.2 0.4 0 ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ ¹ cτ (cm) $\mathbf{Z}_{^{3}}_{\mathsf{He}}$ $\tau({}^{3}_{\Lambda}H) = 182^{+89}_{-45} \pm 27$

STAR, Science 328 (2010) 58 arXiv:1003.2030v1 [nucl-ex]

decay-length/($\beta \gamma$) (cm)

15

20

25

42

 $\circ \Lambda$

Summary

★ STAR experiment at RHIC provides wealth of new and exciting results on QCD condense matter, hadronic and particle physics.

★STAR spin program has reached its maturity.

STAR measurements provide a strong evidence for non-trivial jet-medium interaction.

First STAR results from Beam Energy Scan program are exciting. Search for the critical point is ongoing.

Discovery of anti-hypernucleus puts STAR into the forefront of hypernuclear physics.