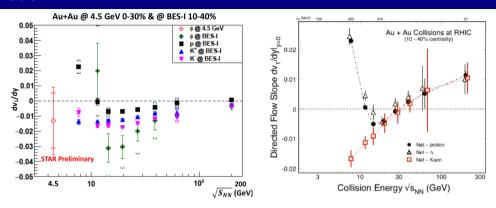
Anisotropic flows of ϕ -meson in Au+Au collisions at 3 GeV, 7.2 GeV FXT from STAR

Ding Chen, for the STAR Collaboration

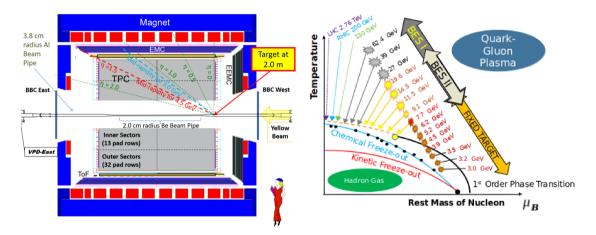
University of California, Riverside

April 18, 2020

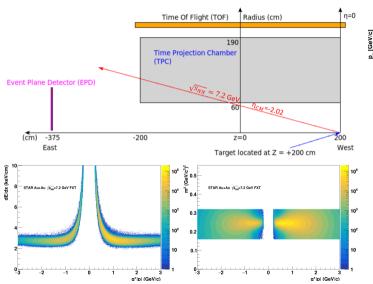


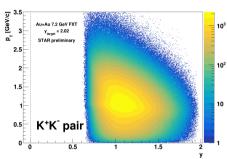
Outline

- Motivation
- Method
 - Fixed Target Collisions
 - Kaon Identification
 - Invariant Mass
 - Flow Extraction
- Results and Comparison
- Summary and Outlook


Motivation

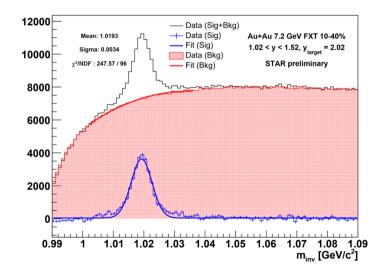
- \bullet The $\phi\text{-meson}$ has small cross-section with hadronic matter sensitive to early stage of collisions
- ullet BES-I show hint of sign change of ϕ -meson dv_1/dy around 11.5 GeV, with large error bars
- The minimum of net-proton and net- Λ dv_1/dy may indicate the softest point of EoS¹, does the ϕ -meson dv_1/dy have a minimum as collision energy decrease?

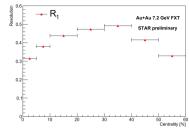

¹L. Adamczyk et al. (STAR). Phys. Rev. Lett. 120 062301.

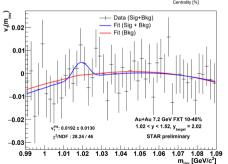

Fixed Target (FXT) Collisions

• FXT program at STAR enables us to scan a range of low collision energies that collider mode (COL) cannot reach ($\sqrt{s_{NN}}$ < 7.7 GeV down to a minimum of 3 GeV)

Kaon Identification



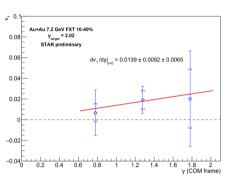

- ϕ -mesons are reconstructed by K^+K^- pairs
- Kaons are identifed by dE/dx from TPC and mass² from TOF
- TOF acceptance doesn't cover mid-rapidity at this energy
- Convention used in this analysis: $y = y_{Lab} y_{mid}$, $y_{mid} = -2.02$

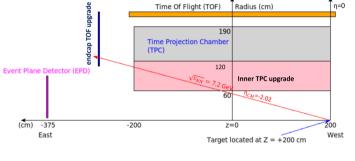

Invariant Mass

- Plot K^+K^- pairs from the same event data (Sig+Bkg) and mixed event data (Bkg), subtract them to get ϕ -meson signal
- Fitting Function:
 - Sig : Gaussian + Constant
 - Bkg : 2^{nd} order polynomial

Flow Extraction: Invariant Mass Method

- ϕ -meson v_1 is measured by event plane method with event plane from EPD ($-5.1 < \eta < -2.1$), corrected by the first-order event plane resolution R_1 of EPD
- Fitting Function:

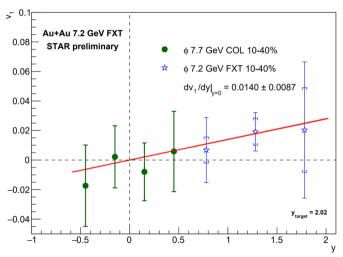

• Sig + Bkg:
$$Y_R v_1^{Sig}(m_{inv}) + (1 - Y_R) v_1^{Bkg}(m_{inv})$$


• Bkg :
$$(1 - Y_R)v_1^{Bkg}(m_{inv})$$

•
$$Y_R = \frac{Y_{ields}(S_{ig})}{Y_{ields}(S_{ig}) + Y_{ields}(B_{kg})}$$

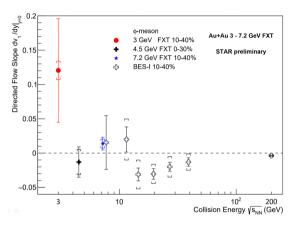
• v_1^{Bkg} : Estimated with 2^{nd} order polynomial

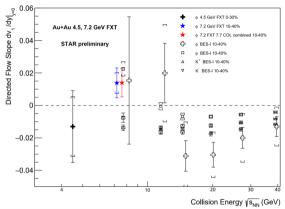
Results and comparison



• Fitting function $f(y) = p_1 y$, where p_1 is the slope dv_1/dy

 Future FXT dataset with eTOF and iTPC will have PID coverage at mid-rapidity


Results and comparison



- Plot collider mode (COL) 7.7
 GeV¹ and FXT 7.2 GeV phi-meson v₁ together
- It shows good agreement between COL and FXT modes
- FXT mode provides a lever arm to improve linear fit

¹(STAR), Phys. Rev. Lett. 120 062301

Results and Comparison

Right plot: BES-I data for $\phi\text{-meson}$ are shifted by +0.5~GeV

As the collision energy decreases the $dv_1/dy|_{y=0}$ of ϕ -meson shows sign of turning negative to positive

Summary and Outlook

Summary

- The $dv_1/dy|_{y=0}$ of ϕ -meson at intermediate centrality (10-40%) shows sign of turning positive below 7.7 GeV Au+Au collision
- This may indicate a softest point of EoS for produced particles call for theory/model calculations
- Results from fixed target and collider modes connect well. At same collision energy, combine FXT and COL modes can improve the flow measurements

Outlook

- More FXT data with upgraded detectors from STAR are in production as well as COL data, which will help to map out the trend of ϕ -meson flows at 3 20 GeV
- ϕ -meson v_2 analysis at 7.2 GeV FXT is in progress