Dielectron Production in Au+Au Collisions at BES Energies
and its energy dependence from SPS to top RHIC energies

Patrick Huck for the STAR Collaboration
RBRC Thermal Radiation Workshop, BNL
12/06/2012

Table of Contents
› Motivation
› Data Analysis
› Results & Conclusions
› Summary
Fundamental Questions for HIC’s

1) thermally equilibrated matter produced through sufficient rescattering?
magnitude of collective expansion indicates $\tau < 1$-2 fm/c characterize medium by bulk thermodynamic variables

2) distinctive footprint of individual partons? v_2 NCQ scaling: collectively expanding partonic source

3) deconfinement? chiral restoration? spectroscopy via short-lived resonances due to inaccessible order parameter

Beam Energy Scan Program
consistently combine various signatures over a wide range of beam energies

- access hadronic spectral functions via EM probes ($\gamma / l^+ / l^-$) negligible FS interactions due to $\lambda_{mfp} > \tau_{FB}$
- additional dynamic information about HIC stages encoded in invariant mass
Dielectron Physics @ STAR

Low-Mass-Region (M_{ee} < 1.1 \text{ GeV/c}^2)

- distinct features of fireball radiation from hadronic phase hidden by direct decays
- ~50% reduction in ρ/ω region
- factor 2 enhancement at ~0.5 GeV/c^2
- ω/ϕ less susceptible to in-med. modifications
- possibly connected to χ_{SR} through analogy with reduced duality threshold

R. Rapp, arXiV:0901.3289 & PRC 63 054907

Intermediate-Mass-Region (1.1 < M_{ee} < 3 \text{ GeV/c}^2)

- measure initial QGP temperature from IMR m_T spectra
 - however, with contributions from correlated charmed decays unknown, large systematic uncertainties arise even at 200 GeV.
 - thus, BES analyses presented here concentrate on LMR physics

STAR in unique position to study energy dependent dielectron production and study/confirm medium consequences on spectra w.r.t to their energy dependence
installation of TOF completed in 2010 enables pure eID combined with energy loss in TPC

- photon conversion sources: beam pipe, SVT support cones and inner TPC field cage
- >98% conversion rejection via ϕ_V cut
Background Subtraction Methods

e^+e^- created in pairs

\Rightarrow unlike-sign BG is geometric mean of the like-sign BGs independent of primary probability/multiplicity distribution

$$\langle \text{BG}_{+-} \rangle = 2\sqrt{\langle \text{BG}_{++} \rangle \langle \text{BG}_{--} \rangle}$$

1) Like-Sign Same Event Method

- All like-sign pairs of one event are combined and averaged.
- Method reproduces the background from all correlated sources.
- Acceptance difference of like-sign to unlike-sign pairs is corrected using the ME Technique.

2) Unlike-Sign Mixed Event Method

- Charges from two different events within same event class are combined (event vertex, reference multiplicity & event plane).
- Method describes uncorrelated BG only.
Efficiency Correction

TPC Selection Efficiency & Purity

- **Contamination**:
 - K⁻
 - π⁻
 - p/\bar{p}

- **Efficiency & Purity**
 - e⁺⁻ Efficiency
 - e⁺⁻ Purity

Systematic Uncertainty of Track Quality Cuts

- Estimated uncertainties reflect reproducibility of track quality distributions in embedding.

- \(10-15\%\)

Dielectron Production in Au+Au Collisions at BES Energies

- **39 GeV**
 - TPC Tracking + TOF Matching + eID Selection
Dielectron Production in Au+Au Collisions at BES Energies

Cocktail Simulation

- flat $\eta \ [\ -1,1\]$ & $\phi \ [0,2\pi\]$, Kroll-Wada for Dalitz decays & according form-factors from measurements (PDG)

- AuAu@19.6 GeV:
 - Tsallis fits to meson spectra from SPS PbPb@17.3GeV
 - meson/π^0 ratio from SPS & π^0 yield from STAR
 - Conversion included via full STAR GEANT simulation

- $\text{AuAu@39 & 62.4 GeV}$:
 - π^0 p_T spectra from $\pi^{+/−}$ @STAR, K spectra used for η
 - Unknown p_T distributions taken from AMPT
 - According yields extrapolated from 200 GeV based on AMPT’s \sqrt{s}-dependence
 - conversion rejected via ϕ cut

- Contributions due to correlated charmed decays simulated using PYTHIA and scaled to Au+Au by N_{bin}

Input p_T Spectra

- π^0
- $\phi \times 0.05$
- η (K)
- J/ψ
- $\rho \times 0.3$
- 39 GeV
- $\omega \times 0.2$
- 62 GeV

STAR Preliminary

- $dN/dp_T/d\eta$ [GeV/c]^2

Comparison

- STAR Preliminary $D^0 + D^0$ in $p+p$
- STAR Preliminary D^0 in Au+Au 0-80%
- Δ STAR $D^0 + e$ in $d+Au$
- PHENIX e
- SPS/FNAL
- Pamir/Muon
- UA2

- FONLL
- NLO pQCD
- PYTHIA
• e^+e^- production below 3.5 GeV/c2 systematically studied in STAR from $\sqrt{s_{NN}} = 19.6$ GeV up to top RHIC energy.

• correlated charm adjusted to observed dielectron yield
 FONLL predictions are used as lower and
 χ^2 fits to the IMR data as upper limits

• vacuum-ρ does not account for the excess yield in the LMR
LMR Enhancement

- visible LMR excess over hadronic cocktail observed for all energies. (excl. $\rho \to e^+e^-$)
- systematic measurement of the LMR enhancement factor (agreement with CERES result)
 [M_{ee}-dep. energy overlay see backup]

- LMR enhancement at 19.6 GeV comparable with CERES at 17.3 GeV
 (note: different experimental acceptances)

- increasing enhancement with decreasing energy w.r.t. the cocktail?
 “any energy dep. in X-Factor might be physics directly related to dielectrons from earlier creation times due to $\rho_{B}^{tot} \sim$ const” Z. Xu
Within systematic uncertainties, in-medium modifications of the ρ spectral function consistently describe the LMR enhancement from SPS to top RHIC energies.
Dielectron spectra from Au+Au collisions measured in STAR at $\sqrt{s_{NN}} = 19.6, 39, 62.4$ & 200 GeV and compared to cocktail calculations.

LMR excess yield can be accounted for by in-medium modifications to the ρ spectral function across a wide range of energies.

Enhancement increasing with decreasing energy w.r.t. the cocktail?

Measurements will provide comprehensive data for the better understanding of the LMR enhancement (p_T, centrality and energy dependence)

Work in progress
- complete BES data set
- p_T spectra for M_{ee} regions
- detailed systematic uncertainty studies
- cocktail improvements

Outlook
- IMR: Charm continuum contribution and its possible in-medium modification need better understanding in Au+Au to possibly access QGP radiation in the future
 ⇒ study energy dependence of initial temperature
 ⇒ STAR HFT & MTD upgrades

Thank you for your attention
BACKUP SLIDES
- absence of baryonic resonances with ϕN decay channels due to OZI-rule *
 * \bar{s} annihilation into excitation energy strongly suppressed

<table>
<thead>
<tr>
<th>$\sqrt{s_{NN}}$ (GeV)</th>
<th>Vector Meson Yields (30% uncertainty assigned)</th>
<th>σ_{pp}^{cc} (mb) \pm sys.</th>
<th>N_{coll} bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>π^0 57, η^+ 9.37, ω 4.42, ϕ 1.39</td>
<td>4.8×10^{-4}</td>
<td>243</td>
</tr>
<tr>
<td>62.4</td>
<td>π^0 72.9, η^+ 11.4, ω 5.38, ϕ 1.79</td>
<td>1.2×10^{-3}</td>
<td>253</td>
</tr>
</tbody>
</table>
Dielectron Production in Au+Au Collisions at BES Energies

Vector Meson Signals & S/N

- \(\rho/\omega \) region exhibiting a S/N ratio of \(\sim 1/100 - 1/250 \)
- background subtraction crucial
- prominent vector meson signals after background subtraction
define ϕ_V as the orientation of the dilepton plane w.r.t. the magnetic field
Cocktail w/ Vacuum-Rho