

Joel Mazer

Rutgers University

"Event plane dependence of jet quenching studied via azimuthal correlations and differential jet shape in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with the STAR detector at RHIC"

On behalf of the STAR collaboration 13th International Workshop on High $p_{\scriptscriptstyle T}$ Physics in the

RHIC/LHC era: March 19-22th 2019

Jets in heavy-ion collisions

- Hard scattering $(Q^2 > 1 (GeV/c)^2)$
- Hadronization into colorless collimated spray of particles: 'jets'
- A+A collisions: scattered partons interact with medium
- → 'jet quenching'
 - Jets can probe the QGP

Jet finder: groups final state particles into jet candidates

• Ideally reflect kinematics of partons (p_{τ}, η, Φ)

Challenge in A+A analyses: <u>large fluctuating background</u>

The Solenoidal Tracker At RHIC (STAR)

- BEMC: lead-scintillator sampling calorimeter
 - $|\eta| < 1.0, 0 < \phi < 2\pi$
 - Resolution: 0.05x0.05
 - Study high p_T processes, triggering

Remove contamination from charged particles

- Time Projection Chamber:
- $|\eta| < 1.0, 0 < \phi < 2\pi$
- Tracking, momentum, dE/dx measurement

Charged ____constituents

Full Neutral constituents

Full jet = charged + neutral

Modeling energy loss

Constraining QGP properties starts with **comparing** our data to **models**Factorization is the basis for all parton energy loss models

$$\underbrace{\frac{dN}{dp_{\mathsf{T}}}\Big|_{\text{hadrons}}}_{\text{final state}} = \underbrace{\frac{dN}{dE}\Big|_{\text{jets}}}_{\text{pQCD, nPDF's}} \otimes \underbrace{\underbrace{P(\Delta E)}_{P(\Delta E)}}_{\text{energy loss distribution}} \otimes \underbrace{\underbrace{D(p_{\mathsf{T}}/E)}}_{\text{fragmentation function}}$$

Milhano, Zapp: Eur. Phys. J. C76 (2016) no.5, 288 $^{\Delta L_n = L_{n,2} - L_{n,1} \text{ [fm]}}$

"Mean path-length difference shift is small compared to width of the distributions, which is a measure of the importance of fluctuations"

Can we experimentally distinguish between the effects of path-length dependence and the enhancement of vacuum-like fluctuations?

Jet-hadron vs EP correlation

Fix trigger jet relative to the "2nd order" event plane: Ψ_{FP2}

Event plane reconstruction: similar approach to Phys. Rev. C89 (2014) 041901(R) (more on slide 11,12)

Event plane dependence

IN-plane: 0° < $|\phi_{\rm jet}$ - $\Psi_{EP,2}|$ < 30°

MID-plane: $30^{\circ} < |\varphi_{\rm jet} - \Psi_{EP,2}| < 60^{\circ}$

OUT-of-plane: 60° < $|\phi_{\rm jet}$ - $\Psi_{EP,2}|$ < 90°

- Event plane (path-length) dependence of medium modifications?
- Are we sensitive enough?

Total energy loss = collisional + radiative ~ Lⁿ?

Jet-hadron correlation measurement steps

Jet-hadron correlations analysis steps:

- Signal events: jet-hadron pairs from the same event
 - Generated in $\Delta \eta$ and $\Delta \Phi$ bins

Trigger Object: "hard core" jets

- Tracks p_{τ} > 2.0 GeV/c,
- Towers $E_{T} > 2.0 \text{ GeV}$
- − Require high tower E_{τ} > 4.0 GeV
- Anti- k_{T} , R=0.4, p_{T} = 15-20 GeV/c

Phys. Rev. Lett. 112 (2014) 122301

Jet-hadron correlations analysis steps:

- Mixed events used for our <u>acceptance correction</u>:
 - Jets from triggered events correlated with charged hadrons of minimum-bias events of a similar event class

Jet-hadron correlations analysis steps:

Correct same event pairs by mixed event pairs

-(same events) / (mixed events)

N_{unc}: only pair acceptance correction was applied, not tracking efficiency (for all of talk)

- •Correlation function =
 signal (jet) + underlying event
- Underlying event
 - Flat pedestal in pp
 - Flow modulated (initial collision geometry) in heavy-ion collisions
- Subtract (event plane dependent) background from correlation of form: $B\left(1+2\,v_2^{jet}\,v_2^{assoc}\cos\left(2\Delta\varphi\right)+2\,v_3^{jet}\,v_3^{assoc}\cos\left(3\Delta\varphi\right)+\ldots\right)$
 - $_{-}$ Shape is dependent on the event plane resolutions: $R_{_{
 m n}}$

Removing background from correlations

Event plane dependence: background

- Background shape depends on angle relative to the event plane, need a different formula for each orientation
- •All combined event plane angles:

$$B\left(1+\sum v_n^t v_n^a \cos(n\Delta \boldsymbol{\phi})\right)$$

- •When trigger is restricted relative to the event plane:
 - Background level modified

$$B = 1 + \sum_{k=1}^{\infty} 2 v_k^a v_k^{R,t} \cos(k\phi_s) \frac{\sin(kc)}{kc} R_n$$

Effective v_n modified

$$v_{n}^{R,t} = \frac{v_{n} + \cos\left(n\boldsymbol{\phi}_{S}\right) \frac{\sin\left(nc\right)}{nc} R_{n} + \sum\left(v_{k+n} + v_{k-n}\right) \cos\left(k\boldsymbol{\phi}_{S}\right) \frac{\sin\left(kc\right)}{kc} R_{n}}{1 + \sum 2v_{k} \cos\left(k\boldsymbol{\phi}_{S}\right) \frac{\sin\left(kc\right)}{kc} R_{n}}, n = even$$

 $\phi_{\rm S}$: center of angular window

2c: width of window

Nattrass & Todoroki, Phys. Rev. C97 (2018) 054911 Bielcikova et al, Phys. Rev. C69 (2004) 021901

In-plane and out-of-plane correlation functions; ideal EP (FULL Lines); finite EP resolution ($\langle \cos(2\Delta \Psi) \rangle = 0.3$) (dashed Lines)

Event plane resolution

$$R_{n} = \langle \cos \left(n \left(\psi_{n,true} - \psi_{n,reco} \right) \right) \rangle$$

Joel Mazer - 13th High-Pt Workshop 2019 - Knoxville, TN

Event plane resolution

• Due to finite multiplicity of each event, there will be a difference between reconstructed event plane and underlying symmetry plane: ψ_n

$$R_n = \langle \cos \left(n \left(\psi_{n,true} - \psi_{n,reco} \right) \right) \rangle$$

- ullet Using modified reaction-plane (MRP) method, for $p_{\scriptscriptstyle T}$ associated bins
- Peak for 20-30% & 30-40% centrality
- Excluding $0.5 < p_{\scriptscriptstyle T} < 1.0 \; {\rm GeV}/c$ tracks gives lowest $R_{\scriptscriptstyle n}$
 - Also seen by Phys. Rev. C89 (2014) 041901(R)

Near-side fit (NSF) method

30-40% central (simulation) TOY MODEL

No reaction plane dependence

 $\frac{dN^{pairs}}{\pi d \Delta \Phi} = B \left(1 + \sum_{n=1}^{\infty} 2 v_n^{trigger} v_n^{assoc} \cos(n \Delta \phi) \right)$

NOT used by this analysis

•Signal is negligible in large $\Delta \eta$ and small $\Delta \phi$ region.

Signal+background

Background dominated region

Near-side fit (NSF) method

30-40% central (simulation) TOY MODEL

No reaction plane dependence

NOT used by this analysis

$$\frac{dN^{pairs}}{\pi d \Delta \Phi} = B \left(1 + \sum_{n=1}^{\infty} 2 v_n^{trigger} v_n^{assoc} \cos(n \Delta \phi) \right)$$

•Signal is negligible in large $\Delta \eta$ and small $\Delta \varphi$ region.

- •NSF for 1.0< $|\Delta\eta|$ < 1.4 and $|\Delta\Phi|$ < $\pi/2$
- Fit up to 4th order v_n term, total 6 fit parameters: B, v₂assoc, v₂trig, v₃assoc v₃trig, v₄assoc, and v₄trig

Sharma, Mazer, Stuart, Nattrass: Phys. Rev. C93 (2016) 044915

Reaction plane fit (RPF) method

30-40% central (simulation) TOY MODEL

 The background shape in the correlations depends on the angle of trigger relative to the event plane - different functional form: require same parameters

 RPF is more robust of a method, more information going in to give a more constrained background fit

Fewer assumptions and less bias than ZYAM while having much smaller errors

out-of-plane

Reaction plane mid-plane

in-plane

Correlation Results

Data results: p_T^{assoc} 1.0-1.5 GeV/c

Background uncertainty is non-trivially correlated point-to-point
 Joel Mazer - 13th High-Pt Workshop 2019 - Knoxville, TN

Data results: p_T^{assoc} 2.0-3.0 GeV/c

Background uncertainty is non-trivially correlated point-to-point
 Joel Mazer - 13th High-Pt Workshop 2019 - Knoxville, TN

Competing effects of associated hadrons

Equilibration in medium Fewer jets, lower high- p_{T} yield out of plane

Bremsstrahlung Softer, higher yield out of plane

out-of-plane

mid-plane

in-plane

Fluctuations
Individual jets'
energy loss may vary

Yields

Near-side and away-side yields vs. EP

Single track reconstruction efficiency NOT applied

R=0.4 full Jets 15-20 GeV/c, 20-50% centrality

- NS should be EP-independent due to surface bias focus on AS
- Within uncertainties of current statistics, no event plane ordering
- Different levels of (competing) effects in different p_{τ} associated bins
- 1) Equilibration in the medium (decrease yield from in → out)
- 2) Bremsstrahlung (increase yield from in → out)

Quantifying the event plane dependence

Yield ratio

Single track reconstruction efficiency NOT applied R=0.4 full Jets 20-40 GeV/c, 20-50% centrality

- Dominated by statistical uncertainties
- Within current uncertainties, don't observe significant path-length dependence (same jet p_{τ} as ALICE)
- Indication that path-length is a secondary effect to fluctuations of jet energy loss in the medium

Not sensitive enough?

23

out-of-plane

Widths

24

Near-side and away-side widths vs. EP

Single track reconstruction efficiency NOT applied

R=0.4 full Jets 15-20 GeV/c, 20-50% centrality

- Large uncertainties at low $p_{\scriptscriptstyle \perp}$
- Broadening seen for decreasing associated momenta
 - Expected from either collisional energy loss or gluon bremsstrahlung
 - Path-length dependent energy loss would lead to greater width for jets out-of-plane than in-plane
- No significant path-length dependence of widths seen within uncertainties

Jet-hadron summary

- Event plane dependence of jet-hadron correlations
 - Another tool for exploring path-length dependent modifications to jets in medium
- No significant event plane dependence seen within uncertainties of the measurement – on yield ratios or widths
 - path-length dependence → secondary effect
 - Event-by-event fluctuations play important role to jet energy loss
 - consistent with: ALICE results, JEWEL studies at LHC energies, re-analysis of STAR, Phys. Rev. C94 (2016) 011901(R)

Exploring Differential Jet Shape

Jet Shape

Motivation:

- Jet shapes measure the average distribution of jet energy as a function of distance from the jet axis
- It can discriminate between different models of jet quenching
- It can distinguish physics mechanisms of quark and gluon energy loss in medium

Differential jet shape:

$$\rho(\Delta r) = \frac{1}{\delta r} \frac{1}{N_{\text{jets}}} \sum_{\text{jets}} \frac{\sum_{\text{tracks} \in (r_a, r_b)} p_{\text{T}}^{\text{trk}}}{p_{\text{T}}^{\text{jets}}}$$

Jet shape function: provides information about the radial distribution of the momentum carried by the jet constituents (fragments)

<u>Averaged over many jets</u>

LHC Jet Shape studies

LHC differential jet shape results

CMS, $\sqrt{s_{NN}} = 2.76 \text{ TeV pp}$, $\int L dt = 5.3 \text{ pb}^{-1}$ PbPb, $\int L dt = 150 \,\mu\text{b}^{-1}$ anti-k_T jets: R = 0.3 **⊕** PbPb p_iet > 100 GeV/c → pp reference $0.3 < |\eta^{\text{jet}}| < 2$ 10 track >1 GeV/c p (r) 0-10% 70-100% 50-70% 30-50% 10-30% 10⁻¹ 1.5 $\rho(r)^{PbPb}/\rho(r)^{pp}$ 0.5 0.2 0.3 0 0.2 0.3 0 0.2 0.3 0 0.2 0.3 0 0.2 0.3 0.1 0.1 0.1 0.1 0.1 Phys. Lett. B 730 (2014) 243

- Significant modification at large radius (r) with respect to the jet axis, looking at tracks with $p_{\scriptscriptstyle T} > 1~{\rm GeV}/c$
- Consistent with expectations from jet quenching models

LHC: decomposing transverse momentum balance contributions

- Clear broadening that increases with centrality
- Significant modification at large r relative to the jet axis
- Where does the radiated energy go?
 - seen at large distances from jet, mainly in form of low- $p_{_{\rm T}}$ particles Joel Mazer 13th High-Pt Workshop 2019 Knoxville, TN

STAR differential jet shape

Raw Jet shape: Au+Au

- Sum up charged track p_{τ} in Δ r bins from the trigger jet axis
- Sum up charged track $p_{\rm T}$ in $\Delta {\rm r}$ bins from background jet axis in mixed events from minimum bias events of similar event class (centrality, z-vertex, event plane angle)

Differential jet shape (inclusive angle)

- 20-50% centrality
- Leading Jets
- R=0.3 full jets
- 20-40 GeV/c Jets
- Jet Constit. 2.0+GeV/c

 p_{τ} increasing

Background removed from jet cone

- Normalize per trigger: N_{iets} and Δr bin width = 0.05
- High- $p_{\scriptscriptstyle T}$ particles located near jet core

Joel Mazer - 13th High-Pt Workshop 2019 - Knoxville, TN

Decomposing transverse momentum contributions: RHIC

- Leading jets
- R=0.3 full jets
- 20-40 GeV/c Jets
- Jet Constit. 2.0+GeV/c

• Increase in jet momentum leads to more collimated jets with high $p_{\scriptscriptstyle T}$ tracks closer to jet core (10-15 GeV/c jets in backup)

Event plane dependence

$p_{\scriptscriptstyle T}$ increasing

- **20-50%** centrality
- R=0.3 full jets
- •20-40 GeV/c Jets
- •Jet Constit. 2.0+GeV/c
- Background via: mixed events

$p_{\scriptscriptstyle T}$ increasing

- Need to correct for the event plane resolution
- Hint of event plane ordering at low $p_{\scriptscriptstyle extsf{T}}$
- Above 2 GeV/c, results are consistent with each other

EP-dependent differential jet shape: 0.5+ GeV/c tracks

- 20-50% centrality
- R=0.3 full jets
- 20-40 GeV/c Jets
- Jet Constit. 2.0+GeV/c
- Background via: mixed events

Sum of all 0.5+ GeV/c tracks

- Negligible jet shape differences over full momentum to within uncertainties
- Need to look to large R for full recovery of redistributed energy

Phys. Rev. C84 (2011) 024906

Differential jet shape summary

- Event plane dependence of differential jet shape shown
 - -Promising tool to study the energy loss mechanism and discriminate between different models of quenching
- Differential jet shape $\rho(r)$:
 - -Gets broader for less energetic jets
 - −High $p_{\scriptscriptstyle T}$ tracks closer to jet core (low Δ r)
- Differential jet shape relative to the event plane:
 - -Need to look to large jet R for full recovery of redistributed energy
 - -Hint of event plane ordering at low- $p_{\scriptscriptstyle extsf{T}}$
 - -General ordering trend to within uncertainties evidence of path length dependent energy loss?

Conclusions

- No significant event plane dependence seen within uncertainties of the measurement – on yield ratios or widths
 - path-length dependence → secondary effect
 - Event-by-event fluctuations play important role to jet energy loss
 - -consistent with: ALICE results, JEWEL studies at LHC energies, reanalysis of STAR, Phys. Rev. C94 (2016) 011901(R)
- Differential jet shape at RHIC: FIRST LOOK
 - Higher $p_{\scriptscriptstyle T}$ jets are more collimated
 - Harder jets are shown to survive more out-of-plane
 - Hint of event plane ordering at low p_{τ}

Moving forward

- Single track reconstruction efficiency
- Compare to pp (in-progress!)
- Centrality ratios (in-progress!)
- Event plane resolution correction (in-progress!)
- Applying systematics

Happy Birthday Miklos!!

1983 Quark Matter

Backup

Resolution correction

$$\frac{\mathrm{dN}}{\mathrm{d}\phi_{\mathrm{s}}} \propto \left(1 + \frac{2\mathrm{v}_2}{\mathcal{R}}\cos(2\phi_{\mathrm{s}})\right),$$

 ϕ_s : The separation angle between trigger particles and EP

$$f(\chi, \Delta \Psi_2) = \frac{1}{\pi} \left[e^{-\frac{\chi^2}{2}} + \sqrt{\frac{\pi}{2}} \chi(\cos 2\Delta \Psi_2) e^{-\frac{\chi^2 \sin^2 2\Delta \Psi_2}{2}} \left(1 + \operatorname{erf}\left(\frac{\chi \cos 2\Delta \Psi_2}{\sqrt{2}}\right) \right) \right],$$
 and $\chi = \mathcal{R}/\sqrt{\frac{\pi}{8}}$.

S. Voloshin, Y. Zhang, Z. Phys. C 70 (1996) 665

Resolution correction (unfolding)

https://root.cern.ch/doc/master/classTUnfold.html

- Histogram (a) and (b) are filled by the data generated by MC
- 2D histogram (c) is regarded as the "probability matrix", boxes for each row of y can be understood as the probability to migrate to the bin of x
- We again use (a) but as the input. We can obtain the output (d)
- The number of bins after unfolding is half of the input. (8bins -> 4 bins)

$$\chi^2_{unfold} = \chi^2_A + \tau^2 \chi^2_L + \lambda \sum_i (\vec{A}\vec{x} - \vec{y})i$$
, χ^2_A is from a least square minimization τ^2 : regularization strength

 χ^2_L for regularization

λ: Lagrangian parameter

The best value of $\tau 2$ can be obtained from the L curve scan

Data Set and cuts

- Dataset: AuAu 200 GeV, Run14
- Jets taken from: HT2 triggered events
- Centrality determined using grefMultCorr: includes corrections for z-vertex + luminosity
 - Mid-peripheral collisions: Centrality 20-50%
- Z-vtx < 24 cm (statistics driven selection)
- Mixed events taken from: MB triggered events Event Pool: Centrality bins of 10%, Z-vertex bins of 4 cm
- •R=0.4 and R=0.3 full (charged tracks + neutral towers)
- tracks + towers with $p_{T} > 2.0 \text{ GeV/}c$
- Require bias Jet: max track/tower $p_T > 4.0 \text{ GeV/}c$, tower constituent now
- Tower constituent required to have fired trigger

Reduces combinatorial background

Track / Jet quality cuts

Primary tracks

- Transverse momenta: $0.2 < p_{\scriptscriptstyle T} < 20~{\rm GeV}/c$
- •Eta acceptance: -1.0 < eta < 1.0, Azimuth: 0.0 < phi < 2*pi
- •DCA: 3.0
- # of hits in track fit: require > 15
- # of hits in track fit / max # hits: require > 0.52
- Jet constituent towers:
 - $-E_{T}$ > 0.2 GeV after hadronic correction (100% fraction removed)
- Jet constituent tracks: same as regular tracks
 - −Constituents: track p_{τ} > 2.0 GeV/c
- Jets: Full anti- k_{τ} jets
 - -R=0.4 and R=0.3
 - --1.0+R < eta < 1.0-R, 0.0 < phi < 2*pi

Background jet cones

- Case 1: -1 + R < eta,jet < 1 R
 - Eta reflection: eta,bgjet = -eta,jet
 - Phi: phi,bgjet = phi,jet
- Case 2: -R < eta, jet < +R
 - Eta: eta,bgjet = eta,jet
 - Phi shift: phi,bgjet = phi,jet + pi/2 (kept on cyclic coordinates)
 - This is be a problem for EP dependent jet shapes
 - Over estimate background for out-of-plane jets
 - Under estimate background for in-plane jets

Inclusive: combine the above 2 cases

Case 3: mixed events approach – 24 multiplicity bins, 14 - 4 cm z-vtx bins (same as correlation analyis): using kVPDMB5 || kVPDMB30 for mixing

- Eta,bgjet = eta,jet
- Phi,bgjet = phi,jet

Issues with ZYAM

- Tends to underestimate background level
 - Can use fixed point (e.g. $\Delta \varphi = 1$) instead
- v_n for background may not be the same as independent measurements
 - Cumulant methods suppress fluctuations
 - Reaction plane measurements may include effects from jets
 - Events with jets may be different
 - High and low p_T reaction planes may be different
 - Effective v_n are average over particle pairs and includes background from other jets. Measurements of flow are averaged over events and the goal is to suppress contributions from jets.
- If jet peak is broadened, may overestimate background (underestimate signal)
- Only v₂ measured for jets

Background Subtraction Methods

- **Zero-Yield at Minimum (ZYAM):** Assumes v_n from other studies, assumes region around $\Delta \phi \approx 1$ is background dominated
- $\Delta \eta$ **Method:** Project near-side signal onto $\Delta \eta$ and subtract constant background. Near-side only
- $\Delta \eta$ **Gap Method:** Use signal at large $\Delta \eta$ to determine background, assuming constant background in $\Delta \eta$. Near-side only
- Near-Side Fit (NSF): assumes small $\Delta \phi$ /large $\Delta \eta$ region background dominated, fits v_n and B
- Reaction Plane Fit (RPF): assumes small $\Delta \phi$ /large $\Delta \eta$ region background dominated, fits v_n and B using reaction plane dependence
- Near-Side Subtracted NSF/RPF (NSS NSF/RPF): fits v_n and B at small small $\Delta \phi$ using reaction plane dependence after subtracting the near-side with a fit

Little/no path length dependence?

- Path length dependence naively predicted by every model
 - No path length dependence seen in rxn plane dependent $A_{\scriptscriptstyle \parallel}$ either
- Insufficient sensitivity?
- Statistical variation in energy loss is more important than path length dependence
 - J. G. Milhano and K. C. Zapp, "Origins of the di-jet asymmetry in heavy ion collisions," Eur. Phys. J. C76 (2016) no.5, 288
 - F. Senzel, O. Fochler, J. Uphoff, Z. Xu, and C. Greiner, "Influence of multiple in-medium scattering processes on the momentum imbalance of reconstructed di-jets," J. Phys. G42 no. 11, (2015) 115104.

Near-side and away-side yields vs. EP

Single track reconstruction efficiency NOT applied

R=0.4 full Jets 20-40 GeV/c, 20-50% centrality

Within uncertainties of current statistics, no event plane ordering

Different effects in different p_{T} associated bins Competing effects

- 1) Quenching (decrease yield in → out)
- 2) Bremsstrahlung (increase yield in → out)

out-of-plane

mid-plane

in-plane

ALICE Away-side yield diff.: 30-50%

- Within uncertainties, don't observe significant path-length dependence
- Indication path-length is a secondary effect

ALI-PREL-121988

Near-side and away-side widths vs. EP

Single track reconstruction efficiency NOT applied

R=0.4 full Jets 20-40 GeV/c, 20-50% centrality

- Large uncertainties at low $p_{\scriptscriptstyle au}$
- Broadening seen for decreasing associated momenta
 - Expected from either collisional energy loss or gluon bremsstrahlung
 - Path-length dependent energy loss would lead to greater width for jets out-of-plane than in-plane
- No significant path-length dependence of widths seen within uncertainties

Yield ratio

Single track reconstruction efficiency NOT applied R=0.4 full Jets 15-20 GeV/c, 20-50% centrality

- Don't expect much modification on NS
- Dominated by statistical uncertainties
- Within current uncertainties, don't observe significant path-length dependence

out-of-plane

JEWEL comparison at LHC energies

Zapp, Eur. Phys. J. C74 (2014) Issue 2; Zapp, Eur. Phys. J. C60 (2009) 617-632

JEWEL: MC event generator simulating QCD jet evolution in heavy-ion collisions, treating interplay of collisional and radiative energy loss and including LPM interference

- Similar results seen in JEWEL
- Don't observe significant path-length dependence
- Consistent with insignificant impact of path-length compared to jet-by-jet fluctuations in energy loss or fluctuations in the density of the medium

54

Decomposing transverse momentum contributions: RHIC

• High $p_{\scriptscriptstyle T}$ tracks closer to jet core (small r)

STAR

ALICE comparison yield ratio: 30-50%

