Photon-jet coincidence measurements in polarized pp collisions at \sqrt{s} = 200 GeV with the STAR Endcap Calorimeter

Ilya Selyuzhenkov for the STAR Collaboration Indiana University

10th Conference on the Intersections of Particle and Nuclear Physics

San Diego, California, 26-31 May, 2009

Proton spin puzzle

Competing experiments: COMPAS, HERMES, JLAB

Ilya Selyuzhenkov, CIPANP 2009

Latest global analysis of ΔG with RHIC data

Why study photon-jet coincidences?

- Allows reconstruction of parton kinematics, thus to determine the shape of Δg(x)
 X_q
 Better kinematic reconstruction compared to more often di-jets
- Dominated by quark-gluon Compton scattering, while di-jets contain contributions from many partonic sub-processes
- Probes Δg(x) over wide range of x, what removes uncertainties in integral ΔG determination

Sensitivity to $\Delta g(x)$ at small x with forward rapidity photon

 $x_{q,g} = \frac{1}{\sqrt{s}} \left[p_t^{\gamma} e^{\pm \eta_{\gamma}} + p_t^{jet} e^{\pm \eta_{jet}} \right]$

Rare process → measurement is statistics hungry Large background (mostly photons from neutral pion decay) Exciting, but very challenging problem to analyze

Ilya Selyuzhenkov, CIPANP 2009

Ilya Selyuzhenkov, CIPANP 2009

INDIANA UNIVERSITY

Yields before background suppression

g-jet (7 pb⁻¹) prompt photon simulations

QCD (1 pb⁻¹) hard QCD simulations

GEANT+Trigger emulation Partonic p, range: 2-25 GeV

Normalization: PYTHIA luminosity plus 25% overall correction

Transverse shower shapes

data-driven Monte-Carlo: substituting SMD response with that of real photons from eta-meson analysis

Good agreement between shower shapes from real data and data-driven Monte-Carlo

Shower shape analysis

Procedure:

Fit central strips with parametrized shape

Find maximum residual (actual energy deposition minus fit) and use it for background discrimination Discriminate between direct photon and multi-photon (background) events by searching for an extra energy on a side of the peak

Main photon-jet signatures

- > 95% of energy deposition localized in small $\Delta\eta$ - $\Delta\phi$ radius
- photon deposits all energy in small (<4) number of towers
- (almost) no charge particles accompanying photon
- good matching between photon momentum and that of the away side jet
- Small residual: photon shower is narrow and symmetric

data and Monte-Carlo match within 5-10%

Ilya Selyuzhenkov, CIPANP 2009

pp2006 g-jet g-jet + QCD

raw yields before background suppression

Background discrimination and cut optimization

Combine all variables with weights and construct a single discriminant:

$$D = \sum_{i} weight(i) \times variable(i)$$

Maximize signal/background separation by optimizing weights with ROOT LDA (Linear Discriminant Analysis) Purity/efficiency/rejection correlations strongly depend on photon energy and pre-shower condition

For a given efficiency, the signal purity improves with increase in photon pt

Photon-jet yield after background suppression with 70% efficiency (pre-shower average)

Ilya Selyuzhenkov, CIPANP 2009

11

Summary

Agreement between data and Monte-Carlo within 5-10%

• Still working on issues with some of the variables for detailed data to MC comparison

Transverse shower shape analysis

- Reproducing real shower shapes with data-driven Monte-Carlo
- Multi-photon background discrimination with maximum sided residual analysis

Isolation cuts and purity/efficiency optimization

- Maximum signal/background separation with cuts optimized by LDA (Linear Discriminant Analysis)
- With current cuts can reach 25-40% purity with 70% efficiency

Future plans

- Improving purity and efficiency
- Extract photon-jet cross section
- STAR/RHIC is currently accumulating statistics for ΔG sensitivity via photon-jet channel

Backup slides

Ilya Selyuzhenkov, CIPANP 2009

INDIANA UNIVERSITY

Pre-shower energy deposition in MC don't match well real data with same geometry

MC with y2006 geometry looks more like data from Run 8 which has less material in front of EEMC (SVT structure removed)

Propagate into normalization difference when sorting by pre-shower conditions.

