First Measurement of W[±] Boson Production at STAR in Polarized Protons Collisions at RHIC

RIKEN BNL Research Center Workshop June 24-25, 2010 at Brookhaven National Laboratory Jan Balewski

Asymmetry in the sea quarks: STAR W program

0.4

0.3

0.2

0.1

 $\mathbf{x}(\Delta \mathbf{u} + \Delta \mathbf{u})$

Global analysis predicts positive net helicity difference

 $\mathbf{X}(\Delta \mathbf{d} + \Delta \mathbf{d})$

. 0.05

0

-0.05

-0.1

-0.15

0.02

0

-0.02

-0.04

0.1

0.05

0

-0.05

-0.1

Expectations for Ws Measured in Run 9

STAR measures W^{\pm} through e^{\pm} decays: $u + \overline{d} \rightarrow W^{+} \rightarrow e^{+} + \nu$ $\overline{u} + d \rightarrow W^{-} \rightarrow e + \overline{\nu}$

deFlorian/Vogelsang

Expectations for Ws Measured in Run 9

STAR measures W^{\pm} through e^{\pm} decays: $u + \bar{d} \rightarrow W^{+} \rightarrow e^{+} + \nu$ $\bar{u} + d \rightarrow W^{-} \rightarrow e + \bar{\nu}$

deFlorian/Vogelsang

Measure the parity-violating, single-spin helicity asymmetry

$$A_L = \frac{\overrightarrow{\sigma} - \overleftarrow{\sigma}}{\overrightarrow{\sigma} + \overleftarrow{\sigma}}$$

where at LO:

$$A_L^{W^+} \propto -\Delta u(x_1)\overline{d}(x_2) + \Delta \overline{d}(x_1)u(x_2)$$
$$A_L^{W^-} \propto -\Delta d(x_1)\overline{u}(x_2) + \Delta \overline{u}(x_1)d(x_2)$$

Predictions for A_L for $p+p \rightarrow W$

EMC based $W \rightarrow e+v$ trigger in Run 9

• Trigger

- Level 0 trigger BEMC single high tower threshold $E_T > 7.3$ GeV.
- Level 2 trigger BEMC 2 x 2 tower cluster threshold $E_T > 13$ GeV.
- Use these recorded and triggered events to monitor the luminosity.

$p+p \rightarrow W \rightarrow e+v$ events selection

$p+p \rightarrow W \rightarrow e+v$ events selection

$p+p \rightarrow W \rightarrow e+v$ events selection

Reconstructed Di-jet Event (movie)

I,400,000 di-jet events were dominate physics background for Ws

Reconstructed Di-jet Event (movie)

Jacobian peak shape: 2 Body Decay & KT-smearing

Isotropic decay $W \rightarrow e + \nu$ prob. density: $f_{\Omega}(\phi, \cos \theta) = const$, electron $P_T = P_0 * \sin \theta$, where $P_0 = 40 \text{ GeV/c}$. Hence, prob. density: $f_{P_T}(P_T) = \frac{const}{\sqrt{1 - (P_T/P_0)^2}}$ has singularity at $P_T = 40 \text{ GeV/c}$

Assumed P-long of W of 5 GeV/c, no K_T smearing

 $u + \bar{d} \rightarrow W^+$

Jacobian peak shape: 2 Body Decay & KT-smearing

Isotropic decay $W \rightarrow e + \nu$ prob. density: $f_{\Omega}(\phi, \cos \theta) = const$, electron $P_T = P_0 * \sin \theta$, where $P_0 = 40 \text{ GeV/c}$. Hence, prob. density: $f_{P_T}(P_T) = \frac{const}{\sqrt{1 - (P_T/P_0)^2}}$ has singularity at $P_T = 40 \text{ GeV/c}$

Assumed P-long of W of 5 GeV/c, no K_T smearing

 $u + \bar{d} \rightarrow W^+$

Jacobian peak shape: 2 Body Decay & KT-smearing

Isotropic decay $W \rightarrow e + \nu$ prob. density: $f_{\Omega}(\phi, \cos \theta) = const$, electron $P_T = P_0 * \sin \theta$, where $P_0 = 40 \text{ GeV/c}$. Hence, prob. density: $f_{P_T}(P_T) = \frac{const}{\sqrt{1 - (P_T/P_0)^2}}$ has singularity at $P_T = 40 \text{ GeV/c}$

Assumed P-long of W of 5 GeV/c, no K_T smearing

 $u + \bar{d} \rightarrow W^+$

Emerging of W peak over background

sortMay3/run9setP1234.wana.hist.root

STAR Run 9 pp500 data W-reco applied LT~12 pb⁻¹

Emerging of W peak over background

sortMay3/run9setP1234.wana.hist.root

STAR Run 9 pp500 data W-reco applied LT~12 pb⁻¹

> Pythia: $p+p \rightarrow jet+jet$ > STAR Geant model > W-reco algo applied $LT \sim 6 pb^{-1}$

Data/MC Comparison

Modeling Experimental Background

Packground ~Mw/2 ET

- Run analysis with EEMC in veto cuts
 Run analysis without EEMC in
- 2. Run analysis without EEMC in veto cuts
- 3. Subtract two raw signals

→

EMC Cluster E_{T} (GeV)

Modeling Experimental Background

Background

~M_W/2 E_T

EMC Cluster E_{T} (GeV)

W+/W- charge separation in STAR TPC

Ambiguous reco charge removed for A_L

± charges do NOT mix for E_T<50 GeV ► A_L(W+), A_L(W-) independent

Reconstructed Jacobian Peak for W+, W-

W Cross Section – Results

Helicity of beams colliding at STAR

STAR sees 4 helicity configurations STAR runs 4 parallel measurements RHIC measured polarization Run 9 @ 2x250 GeV Pol yellow 0.40 Pol blue 0.38 syst. pol (blue+yellow)=9.2%

Spin dependent luminosity monitoring

spin dependent luminosity of 4 states monitored to ~1%

beams colliding at STAR

yields integrated over |eta|<1

$$\begin{array}{rcl} \begin{array}{lll} \begin{array}{l} \textbf{P-V AL} & \textbf{ALL} \\ \textbf{(the goal)} & \textbf{ALL} \end{array} \\ \\ \begin{array}{rcl} \hline \mathcal{N}_{++} \\ \hline L_{++} \end{array} & = & \sigma_0 \, \left[\, 1 \, + \underline{A_L(P_1 \, + P_2)} \, + \underline{A_N(Q_1 - Q_2)\delta} \, + \underline{A_{LL}P_1P_2} \, \right] \\ \\ \begin{array}{rcl} A_L = \, \frac{\overrightarrow{\sigma} - \overleftarrow{\sigma}}{\overrightarrow{\sigma} + \overleftarrow{\sigma}} \\ \hline A_N = \, \frac{\sigma\uparrow - \sigma\downarrow}{\sigma\uparrow - \sigma\downarrow} \\ \\ \end{array} \\ \begin{array}{rcl} A_{LL} = \, \frac{\sigma \rightarrow \rightarrow - \sigma \rightarrow \leftarrow}{\sigma \rightarrow \rightarrow + \sigma \rightarrow \leftarrow} \end{array} \end{array}$$

yields integrated over |eta|<1

$$\frac{P-V A_{L}}{(\text{the goal})} \qquad \begin{array}{l} A_{N} \times \text{residual} \\ \text{transverse pol Q} \end{array} \qquad \begin{array}{l} A_{LL} \\ A_{LL} \\ \end{array}$$

$$\frac{\mathcal{N}_{++}}{L_{++}} = \sigma_{0} \left[1 + A_{L}(P_{1} + P_{2}) + A_{N}(Q_{1} - Q_{2})\delta + A_{LL}P_{1}P_{2} \right]$$

$$A_N = \frac{\sigma \uparrow - \sigma \downarrow}{\sigma \uparrow - \sigma \downarrow}$$

neglected because STAR is phi-symmetric

$$\delta \simeq \int_{2\pi} d\phi_e \; \mathrm{Effi}(\phi_e) \sin(\phi_e) \simeq 0.02$$

Spin dependent x-section for longitudinal polarization

yields integrated over |eta|<1

$$\frac{\mathcal{N}_{++}}{\mathcal{L}_{++}} = \sigma_0 \begin{bmatrix} 1 \\ + A_L(P_1 + P_2) \\ + A_L(P_1 - P_2) \\ + A_N(Q_1 - Q_2)\delta \\ + A_{LL}P_1P_2 \end{bmatrix} + A_{LL}P_1P_2 \end{bmatrix}$$

$$\frac{\mathcal{N}_{+-}}{\mathcal{L}_{+-}} = \sigma_0 \begin{bmatrix} 1 \\ + A_L(P_1 - P_2) \\ - A_L(P_1 - P_2) \\ - A_N(Q_1 + Q_2)\delta \\ - A_{LL}P_1P_2 \end{bmatrix} - A_{LL}P_1P_2 \end{bmatrix}$$

$$\frac{\mathcal{N}_{-+}}{\mathcal{L}_{-+}} = \sigma_0 \begin{bmatrix} 1 \\ - A_L(P_1 - P_2) \\ - A_L(P_1 + P_2) \\ - A_N(Q_1 - Q_2)\delta \\ - A_{LL}P_1P_2 \end{bmatrix}$$

$$\frac{\mathcal{N}_{--}}{\mathcal{L}_{--}} = \sigma_0 \begin{bmatrix} 1 \\ - A_L(P_1 + P_2) \\ - A_N(Q_1 - Q_2)\delta \\ - A_{LL}P_1P_2 \end{bmatrix}$$

$$\frac{\mathcal{N}_{--}}{\mathcal{N}_{--}} = \sigma_0 \begin{bmatrix} 1 \\ - A_L(P_1 + P_2) \\ - A_N(Q_1 - Q_2)\delta \\ - A_{LL}P_1P_2 \end{bmatrix}$$

$$\frac{\mathcal{N}_{--}}{\mathcal{N}_{--}} = \sigma_0 \begin{bmatrix} 1 \\ - A_L(P_1 + P_2) \\ - A_N(Q_1 - Q_2)\delta \\ - A_{LL}P_1P_2 \end{bmatrix}$$

 $J_{2\pi}$

Longitudinal spin asymmetries for Ws

STAR has measured 4 independent yields for the physics process selected 3 asymmetries are independent (6 were investigated)

yields integrated over |eta|<1

Longitudinal spin asymmetries for Ws

STAR has measured 4 independent yields for the physics process selected 3 asymmetries are independent (6 were investigated)

yields integrated over |eta|<1

	Leading physics asymmetry	cross section dependence	raw asymmetry
	A_L (blue)	$(\sigma_{++} + \sigma_{+-} - \sigma_{} - \sigma_{-+})/sum4$	$A_L P_1$
	A_L (yellow)	$(\sigma_{++} + \sigma_{-+} - \sigma_{} - \sigma_{+-})/sum4$	$A_L P_2$
	AL (average)	$(\sigma_{++} - \sigma_{}) / sum4$	$A_L \frac{P_1 + P_2}{2}$
	ALL	$(\sigma_{++} + \sigma_{} - \sigma_{-+} - \sigma_{+-}) / sum4$	$A_{LL}P_1P_2$
Null test	$A_L(P_1 - P_2)$	$(\sigma_{+-} - \sigma_{-+}) / (\sigma_{-+} + \sigma_{+-})$	$\frac{A_L(P_1 - P_2)}{1 - A_{LL}P_1P_2}$
	$A_L^* \simeq A_L$	$(\sigma_{++} - \sigma_{}) / (\sigma_{++} + \sigma_{})$	$\frac{A_L(P_1+P_2)}{1 + A_{LL}P_1P_2}$

where $sum4 = \sigma_{++} + \sigma_{+-} + \sigma_{-+} + \sigma_{--}$

6 measured spin asymmetries for W+

STAR Run 9 data integrated over |eta|<1

Positive charge, unpol yield=392

Physics asymmetries corrected for unpolarized background

STAR

6 measured spin asymmetries for W+ and W-

STAR Run 9 data integrated over |eta|<1

Positive charge, unpol yield=392

Physics asymmetries corrected for unpolarized background

Negative charge, unpol yield=118

AL for Ws measured in Run 9

$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

STAR Preliminary Run 9

$$A_L(W^+) = -0.33 \pm 0.10 (\text{stat.}) \pm 0.04 (\text{syst.})$$

 $A_L(W^-) = 0.18 \pm 0.19 (\text{stat.}) \stackrel{+0.04}{_{-0.03}} (\text{syst.})$

Summary (for mid rapidity leptons)

- A_L(W⁺) negative, as predicted, ~3 sigma <0
- $A_L(W^-)$ central value positive, as expected
- \bullet systematic errors of A_L under control
- TPC charge separation works up to ET~50 GeV

Future W Measurements at STAR

Future W Measurements at STAR

Ws @ STAR, results and perspectives

Future W Measurements at STAR

lepton $\ln|<1: 2$ beams, eff=0.65 w/ 9MHz RF, Run9 QCD bckg, rhicbos $\sigma W^+, W^-=82$, 19 pb lepton $\ln|=[1,2]: 1$ beam, eff=0.60 w/ 9MHz RF, M-C QCD bckg, rhicbos $\sigma W^+, W^-=5.3, 4.7$ pb

Summary

- Run 9: First observation of W production at STAR
 First collision of polarized proton beams at Js = 500GeV (P~40% / L~14pb-1)
 W± Cross-section and Parity violating single-spin asymmetry measurement
- Critical analysis aspects: Charge-sign discrimination at high pT Rejection and treatment of QCD background
- W A_L & cross section papers in preparation
- Forward tracking upgrade, large luminosity & polarization allow STAR to access helicity of the sea quarks