Suppression of forward pion correlations in dAu interactions at STAR

Ermes Braidot

for the STAR Collaboration Utrecht University & Nikhef

Rencontres de Moriond 2010

Outline

- Introduction
- Low-x physics at STAR
- FMS results:
 - π^0 +h[±] forward-mid rapidity azimuthal correlation
 - $\pi^0 + \pi^0$ forward-mid rapidity azimuthal correlation
 - $-\pi^0 + \pi^0$ forward-forward rapidity azimuthal correlation
- Outlook and Conclusions

Low-x and Color Glass Condensate

- Linear evolution equations predict gluon distribution to diverge as x gets smaller
- Non-linear contribution (recombination) need to be included: **saturation**
- Color Glass Condensate: semi-classical effective field theory for computing low-x gluons in nuclei
 - High occupation numbers (condensate)
 - Weak coupling methods
 - Collective behaviour of gluons
 - Different time scale evolution (glass)

from: incoherent sum of partons (A*proton)

to: thin wall of coherent gluons randomly distributed

diluted vs. saturated systems

• Scattering off dilute system:

- low gluon density (p+p like)
- 2->2 process (**backto-back**) expected from pQCD

Scattering off saturated system:

high gluon density (CGC)

collective
 behaviour

- recoil balanced by many gluons
- 2->1 (or 2->many)
 process (mono-jet)

- Forward Meson Spectrometer (FMS)
 - trigger π^0
 - 2m*2m forward calorimeter
 - 788+476 lead glass cells

• Forward Meson Spectrometer (FMS)

- trigger π^0
- 2m*2m forward calorimeter
- 788+476 lead glass cells

- Forward Meson Spectrometer (FMS)
 - trigger π^0
- Time Projection Chamber (TPC)
 - associated h[±]
- Barrel EM Calorimeter (EMC)
 - associated π^0
- Forward Meson Spectrometer (FMS)
 - \bullet associated π^0

- Forward Meson Spectrometer (FMS)
 - trigger and associated π^0
 - acceptance: 2.5<η<4.0
- Time Projection Chamber (TPC)
 - associated h[±] (-0.9<η<0.9)
- Barrel EM Calorimeter (EMC)
 - associated π⁰ (-0.9<η<0.9)

- Higher p_T cut (GSV)
 - (Guzey, Strikman and Vogelsang, hep-ph/0407201)
 - $p_T^{(LEAD)}$ >2.5GeV ; $p_T^{(ASSC)}$ >1.5GeV
- Lower p_T cut (Low)
 - p_T^(LEAD)>2.0GeV ; p_T^(ASSC)>1.0GeV

FMS-TPC (π⁰+h[±]) correlations

- Forward (FMS) π^0 as trigger particle
- Mid-rapidity (TPC) h[±] as associated
- Data not yet efficiency corrected

- Indication of signal broadening from p+p to d+Au
- Azimuthal broadening p_T dependent:
 - above: σ_{dAu} - σ_{pp} = 0.03±0.05 (stat)
 - below: σ_{dAu} - σ_{pp} = 0.06±0.04 (stat)
- Back-to-back peaks clearly evident

 $\varphi_{\pi} - \varphi_{LCP}$

E. Braidot, Quark Matter 2009 proceedings, arXiv:0907.3473

FMS-BEMC (π^0 + π^0) correlations

- Forward (FMS) π^0 as trigger particle
- Mid-rapidity (BEMC) π⁰ as associated
- Data need to be efficiency corrected
- Larger combinatorial background contribution (to be corrected)
- Consistency with TPC measurements
- Azimuthal broadening from p+p to d+Au is p_T dependent:
 - above: σ_{dAu} - σ_{pp} = 0.11±0.04 (stat)
 - below: σ_{dAu} - σ_{pp} = 0.20±0.03 (stat)
- No hints of away-side peak disappearance (as above)

E. Braidot, Quark Matter 2009 proceedings, arXiv:0907.3473

FMS-FMS (π^0 + π^0) correlations

- Forward (FMS) π^0 as trigger particle
- Forward (FMS) π⁰ as associated

- Centrality averaged
- Near-side peak visible (Δη~0)
- Near-side peak similar p+p vs. d-Au
- Away-side signal suppression from p+p to d+Au
- Strong azimuthal broadening
- Azimuthal broadening p_T dependent:
 - above: σ_{dAu} - σ_{pp} = 0.11±0.06
 - below: σ_{dAu} - σ_{pp} = 0.52±0.05

- Saturation expected more when thick part of the nucleus is probed
- Centrality selection through Au-side multiplicity
- Selection: charge sum from east (Au side: -5.0 < η_{BBC} < -3.4) BBC phototubes

dAu data

 $d+Au \rightarrow \pi^{0}\pi^{0}+X, \sqrt{s} = 200 \text{ GeV}$

Periphera

 $p_{TL} > 2 \text{ GeV}/c$

Central

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

 $GeV/c < p_{TS} < p_{TL}$

east BBC ΣQ

dAu data $d+Au \rightarrow \pi^{0}\pi^{0}+X, \sqrt{s} = 200 \text{ GeV}$ $p_{TL} > 2 \text{ GeV/c}$ $1 \text{ GeV/c} < p_{TS} < p_{TL}$ 10^{0} $10^{$

- Near-side peak similar p+p vs. d-Au
- Away-side signal changing with centrality:
- Peripheral d+Au collisions similar to p+p
- Central d+Au collision show strong suppression

Theory comparison: CGC

- Cyrille Marquet: arXiv:0708.0231
 - calculation: central collisions b=0
 - data: central collision =2.7fm
 - $\eta_{trg} = 3.0$; $\eta_{asso} = 3.0$
 - x_g~0.002
 - uncorrelated background offset
- Kirill Tuchin: arXiv:0912.5479v1
 - central collisions
 - other calculations available: peak present in peripheral d+Au
 - parton level (no fragmentation)
 - gluon-gluon final state (no valence quarks initiating)
 - normalization to fit peak heights
 - good agreement with signal widths

Theory comparison: CGC

- More CGC calculations show:
 - away-side peak disappearance for central d+Au collisions
 - de-correlations are p_T dependent
 - de-correlations are η dependent
 - de-correlations are centrality dependent
 - near-side peak unchanged in d+Au

Outlook

- Away-side peak disappearance not caused by additional multiplicity (embedded simulation into min-bias d+Au data)
- Efficiency and background correction ongoing

Outlook

- Away-side peak disappearance not caused by additional multiplicity (embedded simulation into min-bias d+Au data)
- Efficiency and background correction ongoing
- Systematic Pythia studies on gluon pdf
 - p+p away-side peak area sensitive to gluon density at low x
 - data consistent with pdf that include a rapid rise of the gluon density

Outlook

- Away-side peak disappearance not caused by additional multiplicity (embedded simulation into min-bias d+Au data)
- Efficiency and background correction ongoing
- Systematic Pythia studies on gluon pdf
 - p+p away-side peak area sensitive to gluon density at low x
 - data consistent with pdf that include a rapid rise of the gluon density
- Quantitative theory comparison
- Extending analysis at 1<η_{asso}<2 (EEMC)

Conclusions

- RHIC run-8 provided large d+Au data set
- Strong suppression of away-side peak in central d+Au collisions compared to p+p (FMS-FMS)
- CGC expectations of away-side peak disappearance for central d+Au collisions are qualitatively consistent with data
- Assess other models

back-up

FMS-FMS (π^0 + π^0) correlations

- Forward (FMS) π^0 as trigger particle
- Forward (FMS) π^0 as associated
- Above: p_T^(FMS)>2.5GeV ; p_T^(FMS)>1.5GeV
- Below: p_T^(FMS)>2.0GeV ; p_T^(FMS)>1.0GeV
- Near-side peak evident
- Near-side peak similar p+p vs. d-Au
- Signal broadening from p+p to d+Au
- Strong azimuthal broadening
- Azimuthal broadening p_T dependent:
 - above: σ_{dAu} - σ_{pp} = 0.11±0.06
 - below: $\sigma_{dAu} \sigma_{pp} = 0.52 \pm 0.05$

- Near-side peak similar p+p vs. d-Au
- Away-side signal changing with centrality:
- Peripheral d+Au collisions similar to p+p
- Central d+Au collision show strong suppression

FMS results: $\pi^0 + \pi^0$ correlations

- Correlate forward π^0 with a midrapidity π^0 (bEMC)
- $|\eta_{EMC}| < 0.9$;
- $2.8 < \eta_{EMC} < 3.8$;
- 2.5GeV < p_T^{(FMS);}
- $1.5 \text{GeV} < p_T^{(\text{EMC})} < p_T^{(\text{FMS})}$;
- $|\alpha_{_{FMS/EMC}}|$ <0.7 ;
- $0.07 < M_{\gamma\gamma}^{(FMS)} < 0.30 \text{ GeV}$
- $0.07 < M_{\gamma\gamma}^{(EMC)} < 0.20 \text{ GeV}$
- Only EMC towers used (no SMD)
- only leading particles considered

-- inclusive

pT scan (inclusive)

- dAu width larger than pp (consistent with FMS-BEMC results)
- dAu back-to-back peak area larger than pp at lower pT

FPD results

published run-3 results

- Di-jet studies with azimuthal correlations (FPD early results)
- Disappearance or broadening of jet-like correlation as expected in saturation models
- Mono-jet picture arising?

FPD results

published run-3 results

- Di-jet studies with azimuthal correlations (FPD early results)
- Disappearance or broadening of jet-like correlation as expected in saturation models
- Mono-jet picture arising?

Off-peak analysis

Uncorrected Coincidence Probability (radiant-1)

FMS run8

