Probes of local strong parity violation: Experimental results from STAR

Ilya Selyuzhenkov
for the STAR Collaboration

June 7, 2010

RHIC \& AGS Annual Users' Meeting: workshop on Local Strong Parity Violation BNL, Upton, NY

Non-central relativistic heavy ion collision (HIC)

Colliding nuclei are moving out-of-list

- Overlapped area: non-uniform particle density and pressure gradient
- Large orbital angular momentum:

$$
L \sim 10^{5}
$$

Liang, Wang, PRL94:102301 (2005) Liang, JPG34:323 (2007)

- Strong magnetic field:

$$
\begin{aligned}
\mathbf{B} \sim 10^{15} \mathrm{~T} & \left(e \mathbf{B} \sim 10^{4} \mathrm{MeV}^{2}\right) \\
& \left(\mu_{\mathrm{N}} \mathbf{B} \sim 100 \mathrm{MeV}\right)
\end{aligned}
$$

Rafelski, Müller PRL36:517 (1976)
Kharzeev, PLB633:260 (2006)
Kharzeev, McLerran, Warringa NPA803:227 (2008)

Particle production in HIC: asymmetries wrt. the reaction plane

L - orbital momentum
B - magnetic field

Anisotropic transverse flow
Initial space anisotropy
of the overlapped area
evolves into momentum space
Global polarization/spin alignment
Preferential orientation of the spin of produced particles wrt. the system orbital momentum

Local strong parity violation

Charge separation along the magnetic field/orbital momentum
(focus of this talk)

Experimental observation of these effects provide:

- Information on initial condition \& evolution of the system created in HIC
- Insight on hadronization mechanism \& origin of hadronic spin
- A probe of fundamental QCD symmetries

Chiral symmetry breaking and P -violation

QCD vacuum (gluonic field energy) is periodic vs. Chern-Simons number, N_{cs} :

Localized in space \& time solutions. Transitions between different vacua via tunneling/go-over-barrier

Quark interaction changes chirality, which is a P and T odd transition

P/CP invariance are (globally) preserved in strong interactions.

Evidence from neutron EDM (electric dipole moment) experiments:

Pospelov, Ritz, PRL83:2526 (1999)
Baker et al., PRL97:131801 (2006)

$$
\theta<10^{-10}
$$

If $\theta \neq 0$, then QCD vacuum breaks P and CP symmetry.

but:

In HIC formation of (local) metastable P -odd domains is not forbidden.

```
T.D. Lee, PRD8:1226 (1973)
Morley, Schmidt, Z.Phys.C26:627 (1985)
Kharzeev, Pisarski, Tytgat, PRL81:512 (1998)
Kharzeev, Pisarski, PRD61:111901 (2000)
```

Voloshin, PRC62:044901 (2000)
Kharzeev, Krasnitz, Venugopalan, PLB545:298 (2002)
Finch, Chikanian, Longacre,
Sandweiss, Thomas, PRC65:014908(2002)

Charge separation in HIC

Magnetic field aligns quark spins along or opposite to its direction

4 spin
4 momentum Θ negative charge
Right-handed quark momentum is opposite to the left-handed one

Vacuum transitions produce local excess of left/right handed quarks:

$$
\mathrm{N}_{\text {left }} \neq \mathrm{N}_{\text {right }}
$$

Induced electric field (parallel to B):

$$
E \sim \theta \cdot B
$$

Positive and negative charges moving opposite to each other
\rightarrow charge separation in a finite volume

Why charge asymmetry wot. the reaction plane is P -violation?

Coordinate/momentum (vectors):

$$
\vec{r} \rightarrow-\vec{r} \quad \vec{p} \rightarrow-\vec{p} \quad \vec{L} \rightarrow \vec{L} \quad \vec{B} \rightarrow \vec{B}
$$

Orbital momentum/magnetic field (pseudo-vectors):

Experimental observable

Azimuthal distribution in case of P -violation

$$
\frac{d N_{ \pm}}{d \phi} \sim 1+2 \sum_{i=1} v_{n} \cos (n \Delta \phi)+2 a_{1, \pm} \sin \Delta \phi+\ldots
$$

e_{z} beam direction (out of sheet)
$e_{x} e_{y} e_{z}$ laboratory frame axes
$\Psi_{R P}$ reaction plane (RP) angle
$\Delta \phi=\phi-\Psi_{R P}$ particle azimuth relative to RP
$v_{n} n$-harmonic anisotropic transverse flow. $n=1$ - directed flow, $n=2$ - elliptic flow
$a_{ \pm}$asymmetry in charged particle production (consider only first harmonic)

Predicted asymmetry is about 1% for mid-central collisions
\rightarrow within an experimental reach

Observable

- Charge asymmetry is too small to be observed in a single event
- Asymmetry fluctuates event by event. P-odd observable yields zero:

$$
\left\langle a_{ \pm}\right\rangle=\left\langle\sin \left(\phi_{ \pm}-\Psi_{R P}\right)\right\rangle=0
$$

- Study P-even correlations: $<a_{\alpha} a_{\beta}>(\alpha, \beta= \pm)$ Measure the difference between in-plane and out-of-plane correlations:

$$
\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{R P}\right)\right\rangle
$$

Voloshin PRC70:057901 (2004)

$$
\begin{aligned}
& =\left\langle\cos \Delta \phi_{\alpha} \cos \Delta \phi_{\beta}\right\rangle-\left\langle\sin \Delta \phi_{\alpha} \sin \Delta \phi_{\beta}\right\rangle= \\
& \left\langle\left\langle v_{1, \alpha} v_{1, \beta}\right\rangle+B g^{(i n)}\right]-\underbrace{\left.\left\langle a_{\alpha} a_{\beta}\right\rangle+B g^{(o u t)}\right]}_{\Delta \phi_{\alpha, \beta}=\phi_{\alpha, \beta}-\Psi_{R P}}=
\end{aligned}
$$

- Large RP-independent background correlations cancel out in $B g^{(\text {in })}-B g^{(\text {out })}$
$B g^{(i n)}\left(B g^{(o u t)}\right)$ denotes in- (out-of) plane background correlations
- RP-dependent (P-even) backgrounds contribute:
$\rightarrow B g^{(\text {in })}-B g^{(o u t)}$ term
$\left.\rightarrow<v_{1, \alpha} v_{1, \beta}\right\rangle$: directed flow (zero in symmetric rapidity range) + flow fluctuations

Medium effects on charge correlations

P-odd domain formation (no medium)

$$
a_{+}=-a_{-}
$$

$$
\begin{gathered}
\left\langle a_{+}^{2}\right\rangle=\left\langle a_{-}^{2}\right\rangle>0 \\
\left\langle a_{+} a_{-}\right\rangle=-\left\langle a_{+}^{2}\right\rangle
\end{gathered}
$$

Quenching in medium

Kharzeev, McLerran, Warringa, NPA803:227 (2008)

Expectations for charge correlations

- Magnitude: $\quad a_{ \pm}= \pm \frac{4}{\pi} \frac{Q}{N_{ \pm}}$

$$
\begin{aligned}
& Q=N_{R}-N_{L} \text { - topological charge }(Q= \pm 1, \pm 2, \ldots) \\
& N_{ \pm} \text {- charged particle multiplicity } \quad\langle Q\rangle \sim \sqrt{N_{ \pm}}
\end{aligned}
$$

For midcentral Au+Au collisions (1 P-odd domain/collision):
$N_{ \pm} \sim 100$ per unit of rapidity $\rightarrow a_{ \pm} \sim 1 \%$

$$
<a_{\alpha} a_{\beta}>\sim 10^{-4}
$$

- Correlation width in rapidity: about one unit
- Localized at $p_{t}<1 \mathrm{GeV} / \mathrm{c}$ (non-perturbative effect)
- Proportional to the magnetic field: $a_{ \pm} \sim B$
- Stronger opposite-sign signal for a smaller colliding system (atomic number)

```
Kharzeev, PLB633:260 (2006)
Kharzeev, Zhitnitsky, NPA797:67 (2007)
Kharzeev, McLerran, Warringa, NPA803:227 (2008)
Fukushima, Kharzeev, Waringa, PRD78:074033 (2008)
```


Measurement technique

- Goal: 2-particle correlations wrt. the reaction plane (RP):

$$
\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{R P}\right)\right\rangle
$$

- In experiment RP is unknown
\rightarrow estimated from azimuthal distribution of produced particles:

$$
\begin{aligned}
\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{R P}\right)\right\rangle=\langle & \left.\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \phi_{c}\right)\right\rangle / v_{2, c} \\
& v_{2, c} \text { e elliptic flow of } c \text {-particle }
\end{aligned}
$$

Implies: c and (α, β) particles are correlated only via RP
\rightarrow validity needs to be tested experimentally

- Measuring (mixed harmonics) 3-particle azimuthal correlations:

$$
\left.\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \phi_{c}\right)\right\rangle=-\left\langle a_{\alpha} a_{\beta}\right\rangle v_{2, c}+\text { [non-parity correlations }\right]
$$

STAR probes of P-violation

The STAR experiment

Charged particle cuts:

Pseudo-rapidity

$$
|\boldsymbol{\eta}|<1
$$

Transverse momentum
$\mathbf{0 . 1 5}<\boldsymbol{p}_{\boldsymbol{t}}<\mathbf{2 G e V / c}$

RP reconstruction with TPC, FTPCs and ZDC SMDs

ZDC SMDs:

recoil neutrons at beam rapidity
(Zero Degree Calorimeter -
Shower Maximum Detector)

Data from RHIC running in year 2004/2005

System	Energy, $\sqrt{ } \mathrm{s}_{N N}$	Events
$\mathrm{Au}+\mathrm{Au}$	$200 / 62 \mathrm{GeV}$	$10.6 / 7 \mathrm{M}$
$\mathrm{Cu}+\mathrm{Cu}$	$200 / 62 \mathrm{GeV}$	$30 / 19 \mathrm{M}$

Detector effects

Testing sensitivity to 2-particle correlations wrt. RP

symbol	(α, β) charges	c-particle
--	same sign	$\|\eta\|<1.0$
$\rightarrow-$	opposite sign	$($ TPC $)$
-	same sign	$2.9<\|\eta\|<3.9$
\square	opposite sign	(FTPCs)

- $v_{2, c}$ correction gives consistent result with TPC/FTPC c-particle (similarly ZDC-SMD)
\rightarrow Probing 2-particle correlations wrt. RP
- Same- and opposite-sign correlations consistent with P -violation

Modeling physics backgrounds

$\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{R P}\right)\right\rangle$	$\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \phi_{c}\right)\right\rangle / v_{2, c}$		
$0.4-$ - STAR: PRC81:054908 (2010) -	symbol	model	c-particle
0.2 Au+Au@200GeV	∇ \triangle \bullet	HIJING HIJING + \mathbf{v}_{2} UrQMD MEVSIM	true reaction plane
	opposite same	HIJING 3-particle correlations	$\|\eta\|<1.0$

HIJING + $\mathbf{v}_{\mathbf{2}}$: added flow "afterburner" MEVSIM: resonances with realistic flow

- Non-zero background correlations, but different from observed signal
Notes:
- cluster production is not well modeled by event generators
- charge and momentum conservation may affect the measurements Pratt arXiv:1002.1758v1 [nucl-th]
- HIJING produce data-like opposite-sign 3-particle correlations:
\rightarrow opposite-sign signal can be diluted by effects not related to RP orientation

Pseudo-rapidity and transverse momentum dependence

Transverse momenta dependence:
\rightarrow the signal extends to higher pt?
$\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{R P}\right)\right\rangle=N_{\text {corr }} / N_{\text {all }}$

Pseudo-rapidity dependence:
\rightarrow typical "hadronic" width
pt and eta dependence consistent with P-violation

Two particle correlations

Two particle correlations wrt. the RP

$$
\begin{aligned}
& \left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{R P}\right)\right\rangle= \\
& =\left\langle\cos \Delta \phi_{\alpha} \cos \Delta \phi_{\beta}\right\rangle-\left\langle\sin \Delta \phi_{\alpha} \sin \Delta \phi_{\beta}\right\rangle \\
& \text { "Regular" two particle correlations } \\
& \left\langle\cos \left(\phi_{\alpha}-\phi_{\beta}\right)\right\rangle= \\
& =\left\langle\cos \Delta \phi_{\alpha} \cos \Delta \phi_{\beta}\right\rangle+\left(\sin \Delta \phi_{\alpha} \sin \Delta \phi_{\beta}\right\rangle \\
& \qquad \Delta \phi_{\alpha, \beta}=\phi_{\alpha, \beta}-\Psi_{R P} \\
& \begin{array}{l}
\text { Background models aren't describe } \\
\text { even the "regular" two particle correlations. } \\
\begin{array}{l}
\text { Indicate contribution from LPV physics } \\
\text { to }\left\langle\cos \left(\phi_{\alpha}-\phi_{\beta}\right)\right\rangle \text { term ? }
\end{array}
\end{array}
\end{aligned}
$$

Summary

Local strong parity violation in heavy-ion collisions predicted to lead to charge separation wrt. the reaction plane.

STAR measurements with P-even observable reveal non-zero signal:

- Can not be described with existing background models
- Qualitatively agrees with predictions for local P-violation
- Confirmed by PHENIX (see next talk by Nuggehalli Ajitanand)

Outlook

Theory:

- Detailed calculations for P-violating signal and backgrounds are needed Experiment:
- Reaction plane from spectator neutrons: Gang Wang WWND2010; APS2010
- Probe higher harmonics with charge multiplicity correlations: talk by Fuqiang Wang
- Future prospects: see afternoon talk by Jack Sandweiss

Backup slides

STAR ZDC SMD \& TPC event plane from 2007 Au+Au data

$\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{R P}\right)\right\rangle$

Correlations with (first harmonic) ZDC-SMD event plane from recent analysis of 2007 data yield similar result to TPC/FTPC

Physics backgrounds

Reaction plane (RP) dependent:

- Directed flow (vanishes in symmetric eta-range), flow fluctuations:

$$
\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \phi_{c}\right)\right\rangle_{\text {flow }}=\left\langle v_{1, \alpha} v_{1, \beta}\right\rangle v_{2, c}
$$

- Global polarization (zero from measurement)
- RP dependent fragmentation ("flowing clusters"):

$$
\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{R P}\right)\right\rangle_{\text {chust }}=A_{\text {clust }}\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \phi_{\text {clust }}\right)\right\rangle_{\text {clust }} v_{2, \text { chust }}
$$

RP independent 3-particle correlations:
Can be removed by better RP determination
Different multiplicity scaling ($1 / N_{c h}{ }^{2}$) compared to P-violation

- Jet fragmentation, resonances, multi-particle clusters
- HBT, Coulomb effects, etc.

Detector effects study

- Track momenta distortions due to the charge buildup in the TPC at high accelerator luminosity
\rightarrow Results for low/high luminosity runs are consistent
- Dependence on reconstructed position of the collision vertex
\rightarrow No vertex dependence found
- Displacement of track hits when it passes the TPC central membrane
\rightarrow Results from different half-barrels of the TPC are consistent
- Feed-down effects from non-primary tracks (i.e. resonance decay daughters)
\rightarrow Results for dca $<1 \mathrm{~cm}$ and dca $<3 \mathrm{~cm}$ are consistent
- Electron contribution checked via dE/dx cut
\rightarrow Effect is negligible
- Studied a correlator similar to parity observable
\rightarrow but with the reaction plane angle rotated by pi/4
- Variation depending on the charge of the third particle used to reconstruct the reaction plane and changes of the STAR magnetic field polarity
\rightarrow Variations does not change the observed signal

Energy and system size dependence

$\mathbf{A u}+\mathbf{A u}$	$\mathbf{C u}+\mathbf{C u}$	α and β charges
-	\ddots	same sign
-	\square	opposite sign

$\nu_{2, c}$ correction systematics
Opposite sign correlations:
Stronger for a smaller (Cu+Cu) system. In agreement with P -violation, but large uncertainties due to possible RP-independent correlations

Charge correlations and $\mathrm{N}_{\text {part }}$ scaling @ 200 GeV

Correlations multiplied by $\mathrm{N}_{\text {part }}$ to remove dilution in more central collisions

$\mathrm{Au}+\mathrm{Au}$	$\mathrm{Cu}+\mathrm{Cu}$	α and β charges
	θ	same sign
-		3 -particle HIJING

Opp-sign correlations scale with $\mathrm{N}_{\text {part }}$ Same sign signal is suggestive of correlations with the reaction plane Stronger opposite charge correlations In $\mathrm{Cu}+\mathrm{Cu}$ at the same $\mathrm{N}_{\text {part }}$

