Probes of local strong parity violation: Experimental results from STAR

Ilya Selyuzhenkov

for the STAR Collaboration

June 7, 2010

RHIC & AGS Annual Users' Meeting: workshop on Local Strong Parity Violation BNL, Upton, NY

Non-central relativistic heavy ion collision (HIC)

b – impact parameter

Colliding nuclei are moving out-of-list

- Overlapped area: non-uniform particle density and pressure gradient
- Large orbital angular momentum:

 $L \sim 10^{5}$

Liang, Wang, PRL94:102301 (2005) Liang, JPG34:323 (2007)

• Strong magnetic field:

B ~ 10^{15} T (e**B** ~ 10^{4} MeV²)

 $(\mu_{\rm N} {f B} \sim 100 \, {\rm MeV})$

Rafelski, Müller PRL36:517 (1976) Kharzeev, PLB633:260 (2006) Kharzeev, McLerran, Warringa NPA803:227 (2008)

Particle production in HIC: asymmetries wrt. the reaction plane

L - orbital momentum B - magnetic field

Anisotropic transverse flow

Initial space anisotropy of the overlapped area evolves into momentum space

Global polarization/spin alignment

Preferential orientation of the spin of produced particles wrt. the system orbital momentum

Local strong parity violation

Charge separation along the magnetic field/orbital momentum (focus of this talk)

Experimental observation of these effects provide:

- Information on initial condition & evolution of the system created in HIC
- Insight on hadronization mechanism & origin of hadronic spin
- A probe of fundamental QCD symmetries

Chiral symmetry breaking and P-violation

Localized in space & time solutions. Transitions between different vacua via **tunneling/go-over-barrier**

Quark interaction changes chirality, which is a P and T odd transition

T.D. Lee, PRD8:1226 (1973) Morley, Schmidt, Z.Phys.C26:627 (1985) Kharzeev, Pisarski, Tytgat, PRL81:512 (1998) Kharzeev, Pisarski, PRD61:111901 (2000)

Ilya Selyuzhenkov 2010/06/07 RHIC&AGS Users' Meeting

P/CP invariance are (globally) preserved in strong interactions.

Evidence from neutron EDM (electric dipole moment) experiments:

Pospelov, Ritz, PRL83:2526 (1999) Baker *et al.*, PRL97:131801 (2006)

 $\theta < 10^{-10}$

If $\theta \neq 0$, then QCD vacuum breaks P and CP symmetry.

but:

In HIC formation of (local) metastable P-odd domains is not forbidden.

Voloshin, PRC62:044901 (2000) Kharzeev, Krasnitz, Venugopalan, PLB545:298 (2002) Finch, Chikanian, Longacre, Sandweiss, Thomas, PRC65:014908(2002)

Charge separation in HIC

Magnetic field aligns quark spins along or opposite to its direction

Right-handed quark momentum is opposite to the left-handed one

Vacuum transitions produce local excess of left/right handed quarks:

Positive and negative charges moving opposite to each other \rightarrow charge separation in a finite volume

Kharzeev, PLB633:260 (2006) Kharzeev, Zhitnitsky, NPA797:67 (2007) Kharzeev, McLerran, Warringa, NPA803:227 (2008) Fukushima, Kharzeev, Waringa, PRD 78:074033 (2008)

Coordinate/momentum (vectors):

$$\vec{r} \rightarrow -\vec{r} \qquad \vec{p} \rightarrow -\vec{p}$$

Orbital momentum/magnetic field (pseudo-vectors):

$$\vec{L} \to \vec{L} \qquad \vec{B} \to \vec{B}$$

Experimental observable

Azimuthal distribution in case of P-violation

$$\frac{dN_{\pm}}{d\phi} \sim 1 + 2\sum_{i=1}^{\infty} v_n \cos(n\Delta\phi) + 2a_{1,\pm}\sin\Delta\phi + \dots$$

 $\Psi_{\scriptscriptstyle RP}\,$ reaction plane (RP) angle

 $\varDelta \, \phi \!=\! \phi \!-\! \Psi_{\scriptscriptstyle R\!P}\,$ particle azimuth relative to RP

 v_n *n*-harmonic anisotropic transverse flow. *n*=1 – directed flow, *n*=2 - elliptic flow

 a_{\pm} asymmetry in charged particle production (consider only first harmonic)

- e_z beam direction (out of sheet)
- $e_x e_y e_z$ laboratory frame axes

Predicted asymmetry is about 1% for mid-central collisions

 \rightarrow within an experimental reach

Kharzeev, PLB633:260 (2006)

Observable

- Charge asymmetry is too small to be observed in a single event
- Asymmetry fluctuates event by event. P-odd observable yields zero: $\langle a_{\pm} \rangle = \langle \sin(\phi_{\pm} - \Psi_{RP}) \rangle = 0$
- Study P-even correlations: $\langle a_{\alpha}a_{\beta} \rangle$ ($\alpha, \beta = \pm$) Measure the difference between **in-plane** and **out-of-plane** correlations:

$$\begin{split} \left| \left\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \right\rangle \right| &= \left\langle \cos \Delta \phi_{\alpha} \cos \Delta \phi_{\beta} \right\rangle - \left\langle \sin \Delta \phi_{\alpha} \sin \Delta \phi_{\beta} \right\rangle = \\ &= \left[\left\langle v_{1,\alpha} v_{1,\beta} \right\rangle + Bg^{(in)} \right] - \left[\left\langle a_{\alpha} a_{\beta} \right\rangle + Bg^{(out)} \right] \\ &= \Delta \phi_{\alpha,\beta} = \phi_{\alpha,\beta} - \Psi_{RP} \end{split}$$

• Large RP-independent background correlations cancel out in $Bg^{(in)}$ - $Bg^{(out)}$

 $Bg^{(in)}(Bg^{(out)})$ denotes in- (out-of) plane background correlations

- RP-dependent (P-even) backgrounds contribute:
 - $\rightarrow Bg^{(in)} Bg^{(out)}$ term
 - \rightarrow < $v_{l,\alpha}v_{l,\beta}$ >: directed flow (zero in symmetric rapidity range) + flow fluctuations

Medium effects on charge correlations

D. Kharzeev, PLB633:260 (2006)

Kharzeev, McLerran, Warringa, NPA803:227 (2008)

Ilya Selyuzhenkov 2010/06/07 RHIC&AGS Users' Meeting

Expectations for charge correlations

• Magnitude: $a_{\pm} = \pm \frac{4}{\pi} \frac{Q}{N_{\pm}}$ $Q = N_R - N_L$ - topological charge ($Q = \pm 1, \pm 2, ...$) N_{\pm} - charged particle multiplicity $\langle Q \rangle \sim \sqrt{N_{\pm}}$

For midcentral Au+Au collisions (1 P-odd domain/collision): $N_{\scriptscriptstyle\pm} \sim 100$ per unit of rapidity $\rightarrow a_{\scriptscriptstyle\pm} \sim 1\%$

$$< a_{\alpha} a_{\beta} > \sim 10^{-4}$$

- · Correlation width in rapidity: about one unit
- Localized at $p_t < 1$ GeV/c (non-perturbative effect)
- Proportional to the magnetic field: $a_{\scriptscriptstyle \pm} \sim B$
- Stronger opposite-sign signal for a smaller colliding system (atomic number)

Kharzeev, PLB633:260 (2006) Kharzeev, Zhitnitsky, NPA797:67 (2007) Kharzeev, McLerran, Warringa, NPA803:227 (2008) Fukushima, Kharzeev, Waringa, PRD78:074033 (2008)

Measurement technique

• Goal: 2-particle correlations wrt. the reaction plane (RP):

 $\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle$

• In experiment RP is unknown

 \rightarrow estimated from azimuthal distribution of produced particles:

$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}) \rangle / v_{2,c}$$

 $v_{2,c}$ - elliptic flow of *c*-particle

Implies: *c* and (α, β) particles are correlated only via RP \rightarrow validity needs to be tested experimentally

• Measuring (mixed harmonics) **3-particle azimuthal correlations:**

 $\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_c) \rangle = -\langle a_{\alpha}a_{\beta} \rangle v_{2,c} + \text{[non-parity correlations]}$

STAR probes of P-violation

The STAR experiment

ZDC SMDs:

recoil neutrons at **beam rapidity**

(Zero Degree Calorimeter -Shower Maximum Detector)

Data from RHIC running in year 2004/2005

System	Energy, $\sqrt{s_{_{NN}}}$	Events
Au+Au	200 / 62 GeV	10.6 / 7 M
Cu+Cu	200 / 62 GeV	30 / 19 M

Detector effects

Acceptance corrections (re-centering):

 $\sin n\phi \rightarrow \sin n\phi - \langle \sin n\phi \rangle$ $\cos n\phi \rightarrow \cos n\phi - \langle \cos n\phi \rangle$

Poskanzer, Voloshin, PRC58:1671 (1998) Borghini, Dinh, Ollitrault, PRC66:014905 (2002) Selyuzhenkov, Voloshin, PRC77:034904 (2008)

symbol	(α, β) charges	c-particle
+	opposite sign, + - same sign, ++ same sign,	positive
	opposite sign, + - same sign, ++ same sign,	negative

- After corrections: consistent results for all charge combinations
- Conclude from a number of tests:
 - \rightarrow detector effects are not responsible for observed correlations.

Testing sensitivity to 2-particle correlations wrt. RP

Modeling physics backgrounds

 $\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}) \rangle / v_{2,c}$

- cluster production is not well modeled by event generators
- charge and momentum conservation may affect the measurements Pratt arXiv:1002.1758v1 [nucl-th]

symbol	model	c-particle
	HIJING HIJING + v ₂ UrQMD MEVSIM	true reaction plane
opposite same	HIJING 3-particle correlations	$ \eta < 1.0$

HIJING + v₂: added flow "afterburner" **MEVSIM:** resonances with realistic flow

- Non-zero background correlations, but different from observed signal
- HIJING produce data-like opposite-sign 3-particle correlations:
 - \rightarrow opposite-sign signal can be diluted by effects not related to RP orientation

Pseudo-rapidity and transverse momentum dependence

Ilya Selyuzhenkov 2010/06/07 RHIC&AGS Users' Meeting

Transverse momenta dependence: \rightarrow the signal extends to higher pt?

$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle = N_{corr} / N_{all}$$

Pseudo-rapidity dependence: → typical "hadronic" width

pt and eta dependence consistent with P-violation

Two particle correlations

Two particle correlations wrt. the RP

$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle =$$

$$= \langle \cos \Delta \phi_{\alpha} \cos \Delta \phi_{\beta} \rangle - \langle \sin \Delta \phi_{\alpha} \sin \Delta \phi_{\beta} \rangle$$

"Regular" two particle correlations

$$\sum_{\alpha,\beta} \exp(\phi_{\alpha} - \phi_{\beta}) = \\ = \langle \cos \Delta \phi_{\alpha} \cos \Delta \phi_{\beta} \rangle + \langle \sin \Delta \phi_{\alpha} \sin \Delta \phi_{\beta} \rangle \\ \Delta \phi_{\alpha,\beta} = \phi_{\alpha,\beta} - \Psi_{RP}$$

Background models aren't describe even the "regular" two particle correlations.

Indicate contribution from LPV physics to $\langle \cos(\phi_{\alpha} - \phi_{\beta}) \rangle$ term ?

Summary

Local strong parity violation in heavy-ion collisions predicted to lead to charge separation wrt. the reaction plane.

STAR measurements with P-even observable reveal non-zero signal:

- Can not be described with existing background models
- Qualitatively agrees with predictions for local P-violation
- Confirmed by PHENIX (see next talk by Nuggehalli Ajitanand)

Outlook

Theory:

- Detailed calculations for P-violating signal and backgrounds are needed Experiment:
 - Reaction plane from spectator neutrons: Gang Wang WWND2010; APS2010
 - Probe higher harmonics with charge multiplicity correlations: talk by Fuqiang Wang
 - Future prospects: see afternoon talk by Jack Sandweiss

Backup slides

Ilya Selyuzhenkov 2010/06/07 RHIC&AGS Users' Meeting

STAR ZDC SMD & TPC event plane from 2007 Au+Au data

Correlations with (first harmonic) ZDC-SMD event plane from recent analysis of 2007 data yield similar result to TPC/FTPC

Physics backgrounds

Reaction plane (RP) dependent:

• Directed flow (vanishes in symmetric eta-range), flow fluctuations:

$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_c) \rangle_{flow} = \langle v_{1,\alpha} v_{1,\beta} \rangle v_{2,c}$$

- Global polarization (zero from measurement)
- RP dependent fragmentation ("flowing clusters"):

$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle_{clust} = A_{clust} \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{clust}) \rangle_{clust} v_{2,clust}$$

RP independent 3-particle correlations:

Can be removed by better RP determination Different multiplicity scaling $(1/N_{ch}^2)$ compared to P-violation

- Jet fragmentation, resonances, multi-particle clusters
- HBT, Coulomb effects, etc.

Detector effects study

- Track momenta distortions due to the charge buildup in the TPC at high accelerator luminosity
 → Results for low/high luminosity runs are consistent
- Dependence on reconstructed position of the collision vertex \rightarrow *No vertex dependence found*
- Displacement of track hits when it passes the TPC central membrane → Results from different half-barrels of the TPC are consistent
- Feed-down effects from non-primary tracks (i.e. resonance decay daughters)
 → Results for dca < 1 cm and dca < 3 cm are consistent
- Electron contribution checked via dE/dx cut
 → Effect is negligible
- Studied a correlator similar to parity observable
 → but with the reaction plane angle rotated by pi/4
- Variation depending on the charge of the third particle used to reconstruct the reaction plane and changes of the STAR magnetic field polarity → Variations does not change the observed signal

Energy and system size dependence

Correlations multiplied by N_{part} to remove dilution in more central collisions

Au+Au	Cu+Cu	α and β charges
-	ϕ	same sign
-	4	opposite sign
		3-particle HIJING

Opp-sign correlations scale with N_{part}

Same sign signal is suggestive of correlations with the reaction plane

Stronger opposite charge correlations In Cu+Cu at the same N_{part}