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Outline

! Brief theoretical motivation

! Experimental Overview

! Cross Section Analysis

! Asymmetry Analysis

! Status of ongoing analysis
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Theoretical Motivation

! Polarized DIS tells us that the 
spin contribution from quark 
spin is only ~30%.
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parabola and the 1σ uncertainty in any observable would correspond to ∆χ2 = 1. In order to account for unexpected
sources of uncertainty, in modern unpolarized global analysis it is customary to consider instead of ∆χ2 = 1 between
a 2% and a 5% variation in χ2 as conservative estimates of the range of uncertainty.

As expected in the ideal framework, the dependence of χ2 on the first moments of u and d resemble a parabola
(Figures 3a and 3b). The KKP curves are shifted upward almost six units relative to those from KRE, due to the
difference in χ2 of their respective best fits. Although this means that the overall goodness of KKP fit is poorer than
KRE, δd and δu seem to be more tightly constrained. The estimates for δd computed with the respective best fits
are close and within the ∆χ2 = 1 range, suggesting something close to the ideal situation. However for δu, they only
overlap allowing a variation in ∆χ2 of the order of a 2%. This is a very good example of how the ∆χ2 = 1 does not
seem to apply due to an unaccounted source of uncertainty: the differences between the available sets of fragmentation
functions.
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FIG. 4: Parton densities at Q2 = 10 GeV2, and the uncertainty bands corresponding to ∆χ2 = 1 and ∆χ2 = 2%

An interesting thing to notice is that almost all the variation in χ2 comes from the comparison to pSIDIS data.
The partial χ2 value computed only with inclusive data, χ2

pDIS , is almost flat reflecting the fact the pDIS data are

not sensitive to u and d distributions. In Figure 3, we plot χ2
pDIS with an offset of 206 units as a dashed-dotted line.

The situation however changes dramatically when considering δs or δg as shown in Figures 3c and 3f, respectively.
In the case of the variation with respect to δs, the profile of χ2 is not at all quadratic, and the distribution is much
more tightly constrained (notice that the scale used for δs is almost four times smaller than the one used for light
sea quarks moments). The χ2

pDIS corresponding to inclusive data is more or less indifferent within an interval around
the best fit value and increases rapidly on the boundaries. This steep increase is related to a positivity constraints on
∆s and ∆g. pSIDIS data have a similar effect but also helps to define a minimum within the interval. The preferred
values for δs obtained from both NLO fits are very close, and in the case of KRE fits, it is also very close to those
obtained for δu and δd suggesting SU(3) symmetry.
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Correlation Measurements
! Reconstructing multiple physics 

objects (di-jets, photon/jet) 
provides information about 
initial parton kinematics

! STAR well suited for correlation 
measurements with its large 
acceptance
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Experimental Setup

! RHIC produces 
polarized proton 
beams up to 250 
GeV in energy

! Siberian snake 
magnets in the 
AGS and RHIC 
help protect beam 
from depolarized 
resonances
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STAR Detector
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Not shown:
Zero-degree calorimeters, 
time-of-flight, polarimeters
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2006 Cross Section
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2006 Cross Section

! Comparison to theory 
(including hadronization 
and underlying event 
correction) shows good 
agreement within 
systematic uncertainties
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2006 Asymmetry

! Run 6 Longitudinal double 
helicity asymmetry

! Systematic uncertainties 
show effects on trigger 
efficiency from different 
theory scenarios

! Scale uncertainty (8.3%)  
from polarization 
uncertainty not shown
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2009 Projections
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Summary

! Correlations measurements provide constraints on parton 
kinematics, which helps constrain the shape of !g(x)

! 2006 Dijet cross section (5.39 pb-1) shows good agreement with 
NLO calculations

! First Dijet double-spin asymmetry (FOM = 0.59 pb-1) from 
2006 data suggests preference away from GRSV-std scenario

! 2009 Dijet asymmetry analysis underway with FOM = 0.96 
pb-1 analyzed to date, and more to come
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Backup
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Data/Simulation Run 6
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! 2006 Simulation:

! 11 STAR MC productions 
producing 4M events with 
partonic pT between 3 GeV 
and 65 GeV

! PYTHIA 6.410, CDF Tune A 

! Run 6 data and simulation 
agreement is good
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Data/Simulation Run 9

! Run 9 data 
simulation 
agreement is 
good
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