Recent **STAR** results on W boson production in polarized p+p collisions at $\sqrt{s}=500$ GeV

Jan Balewski for STAR Collaboration

Cambridge

Recent **STAR** results on W boson production in polarized p+p collisions at √s=500 GeV

Jan Balewski

Asymmetry in the sea quarks: STAR W program

1

Х

 10^{-1}

1111

 10^{-2}

-0.05

-0.1

STAR measures W^{\pm} through e^{\pm} decays: $u + \overline{d} \rightarrow W^{+} \rightarrow e^{+} + \nu$ $\overline{u} + d \rightarrow W^{-} \rightarrow e^{-} + \overline{\nu}$

STAR measures W^{\pm} through e^{\pm} decays: $u + \bar{d} \rightarrow W^{+} \rightarrow e^{+} + \nu$ $\bar{u} + d \rightarrow W^{-} \rightarrow e^{-} + \bar{\nu}$

STAR measures W^{\pm} through e^{\pm} decays: $u + \bar{d} \rightarrow W^{+} \rightarrow e^{+} + \nu$ $\bar{u} + d \rightarrow W^{-} \rightarrow e^{-} + \bar{\nu}$

STAR measures W^{\pm} through e^{\pm} decays: $u + \overline{d} \rightarrow W^{+} \rightarrow e^{+} + \nu$ $\overline{u} + d \rightarrow W^{-} \rightarrow e^{-} + \overline{\nu}$

STAR measures W^{\pm} through e^{\pm} decays: $u + \bar{d} \rightarrow W^{+} \rightarrow e^{+} + \nu$ $\bar{u} + d \rightarrow W^{-} \rightarrow e^{-} + \bar{\nu}$

$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

Pythia+Geant p+p \rightarrow W \rightarrow e+v event @ 500 GeV

Reconstructed Di-jet Event (movie)

I.4 million di-jet events

dominant physics background for 600 W extracted events

Reconstructed Di-jet Event (movie)

Other Reconstructed Events

I,400,000 di-jet events were dominant physics background for Ws

Example of reconstructed $p+p \rightarrow Z \rightarrow e+e$ reco Zmass=94 GeV

W reconstruction: Lepton Isolation

Lepton Isolation Cuts:

•Require TPC track with $p_T > 10 \text{ GeV}$

•Extrapolate track to Barrel Calorimeter

•Require highest 2x2 cluster around pointed tower sum $E_T > 15 \text{ GeV}$

•Require excess E_T in 4x4 cluster < 5%

•Match track to 2x2 cluster position

W reconstruction: Suppress QCD Background

Suppress jets with leading hadron
Near side jet-cone veto
Suppress di-jets and multi-jet events
Require an imbalance in p_T of the lepton cluster and any jets reconstructed outside the near side jet cone

e+/ e- charge separation in STAR TPC

Jacobian peak shape: 2 Body Decay & KT-smearing

Isotropic decay $W \rightarrow e + \nu$ prob. density: $f_{\Omega}(\phi, \cos \theta) = const$, electron $P_T = P_0 * \sin \theta$, where $P_0 = 40 \text{ GeV/c}$. Hence, prob. density: $f_{P_T}(P_T) = \frac{const}{\sqrt{1 - (P_T/P_0)^2}}$ has singularity at $P_T = 40 \text{ GeV/c}$

Assumed P-long of W of 5 GeV/c, no K_T smearing

 $u + \bar{d} \rightarrow W^+$

Jacobian peak shape: 2 Body Decay & KT-smearing

Isotropic decay $W \rightarrow e + \nu$ prob. density: $f_{\Omega}(\phi, \cos \theta) = const$, electron $P_T = P_0 * \sin \theta$, where $P_0 = 40 \text{ GeV/c}$. Hence, prob. density: $f_{P_T}(P_T) = \frac{const}{\sqrt{1 - (P_T/P_0)^2}}$ has singularity at $P_T = 40 \text{ GeV/c}$

Assumed P-long of W of 5 GeV/c, no K_T smearing

 $u + \bar{d} \rightarrow W^+$

Jacobian peak shape: 2 Body Decay & KT-smearing

Isotropic decay $W \rightarrow e + \nu$ $W \rightarrow e + v$, 3D isotropic in W CMS prob. density: $f_{\Omega}(\phi, \cos \theta) = const$, 60 electron P_T (GeV/c) 250 smear 1D σ=0 GeV 22 electron $P_T = P_0 * \sin \theta$, where $P_0 = 40 \text{ GeV/c}$. Hence, prob. density: $f_{P_T}(P_T) = \frac{const}{\sqrt{1-(P_T/P_0)^2}}$ 50 toy simu has singularity at $P_T = 40 \text{ GeV/c}$ Кт=0 40 thia 12 30 40000 10 electron W-> electron neutrino_ neutrino 8 20 30000 e from 6 20000 ET>15 GeV cut used in reco W decay P-tran 4 10 2 10000 -60 40 60 electron P_z (GeV/c) 40 50 60 electron P₇ (GeV/c) 20 60 20 -40 -20 0 P-long (LAB) -10000 $W \rightarrow e + v$, 3D isotropic in W CMS v from -20000 60 electron P_T (GeV/c) W decay 700 smear 1D o=3 GeV 30 -30000 5000.00 MeV/c 50 toy simu. -40000 20000 -20000 00003 40000 $K_T=3 GeVc$ Pythia 40 Assumed P-long of W of 5 GeV/c, 30 no K_T smearing 15 300 20 10 200 >15 GeV cut used in reco 10 5 100 $u + \bar{d} \rightarrow W^+$ 260 40 50 60 electron P₊ (GeV/c) -20 20 40 60 10 30 electron P₇ (GeV/c)

Data/MC Comparison

reco
$$p+p \rightarrow W^{\pm} \rightarrow e^{\pm} \nu$$
 (W± added)

Extracting the W Signal

- Run analysis with EEMC in veto cuts
 Run analysis with out EEMC in
- 2. Run analysis without EEMC in veto cuts
- 3. Subtract two raw signals

Ws @ STAR PANIC 2011

Extracting the W Signal

Ws @ STAR PANIC 2011

Reconstructed Jacobian Peak for W+/- Run 9

Measured W+/- cross section Run 9

- Measured and theory evaluated crosssections agree within uncertainties
- O Theory calculations: Full NLO framework

negative helicity

'naked eye' means big detector + 2 counters + a hand calculator

negative helicity

'naked eye' means big detector + 2 counters + a hand calculator

u-quark polarization seen with 'naked eye'

negative helicity

'naked eye' means big detector + 2 counters + a hand calculator

Measured W+/- Spin asymmetry A_L Run 9

Measured W+/- Spin asymmetry AL Run 9

 $A_L^{W^-} = 0.14 \pm 0.19 \; ({
m stat.}) \pm 0.02 \; ({
m syst.}) \pm 0.01 \; ({
m norm.})$

 $A_L^{W^+} = -0.27 \pm 0.10 \; ({
m stat.}) \pm 0.02 \; ({
m syst.}) \pm 0.03 \; ({
m norm.})$

STAR Collaboration, PRL 106, 062002 (2011)

Measured W+/- Spin asymmetry A_L Run 9

 $A_L^{W^-} = 0.14 \pm 0.19 \; ({
m stat.}) \pm 0.02 \; ({
m syst.}) \pm 0.01 \; ({
m norm.})$

 $A_L^{W^+} = -0.27 \pm 0.10 \; ({
m stat.}) \pm 0.02 \; ({
m syst.}) \pm 0.03 \; ({
m norm.})$

- $A_L(W^*)$ negative with a significance of ~3 σ
- $A_L(W^-)$ central value positive
- Measured asymmetries are in agreement with theory evaluations using polarized pdf's (DSSV) constrained by polarized DIS data
 Universality of helicity distr. functions!

STAR Collaboration, PRL 106, 062002 (2011)

Projections for future $W+/-A_L$

 $A_L^{W^-} = 0.14 \pm 0.19 \; ({
m stat.}) \pm 0.02 \; ({
m syst.}) \pm 0.01 \; ({
m norm.})$

 $A_L^{W^+} = -0.27 \pm 0.10 \; ({
m stat.}) \pm 0.02 \; ({
m syst.}) \pm 0.03 \; ({
m norm.})$

- $A_L(W^*)$ negative with a significance of ~3 σ
- $A_L(W^-)$ central value positive
- Measured asymmetries are in agreement with theory evaluations using polarized pdf's (DSSV) constrained by polarized DIS data
 Universality of helicity distr. functions!

Projections for future $W+/-A_L$

 $A_L^{W^-} = 0.14 \pm 0.19 \text{ (stat.)} \pm 0.02 \text{ (syst.)} \pm 0.01 \text{ (norm.)}$

 $A_L^{W^+} = -0.27 \pm 0.10 \; ({
m stat.}) \pm 0.02 \; ({
m syst.}) \pm 0.03 \; ({
m norm.})$

- $A_L(W^*)$ negative with a significance of ~3 σ
- $A_L(W^-)$ central value positive
- Measured asymmetries are in agreement with theory evaluations using polarized pdf's (DSSV) constrained by polarized DIS data
 Universality of helicity distr. functions!

Forward tracking upgrade

•FGT: 6 light-weight triple-GEM disks using industrially produced GEM foils (Tech-Etch Inc.)

Forward tracking upgrade

FGT quadrant

•FGT: 6 light-weight triple-GEM disks using industrially produced GEM foils (Tech-Etch Inc.)

Run 11 Data Set (Spring 2011)

- Transverse Dataset (8 weeks of data taking):
 - W Trigger Sampled: L \sim 25 pb⁻¹, P \sim 50%
 - Possible feasibility studies for $W A_N$?
- Longitudinal Dataset (9 days of data taking): ullet
 - W Trigger Integrated: L ~ 12 pb⁻¹, $\langle P \rangle$ ~ 43% (online)
 - Similar to Run 9 dataset with slight increase in polarization

Run 11 "Online" Analysis: L~3.5 pb⁻¹

Summary

- Run 9: First observation of W production at STAR
 First collision of polarized proton beams at Js = 500GeV (P~40% / L~14pb-1)
 W± Cross-section and Parity violating single-spin asymmetry measurement
- Critical analysis aspects: Charge-sign discrimination at high pT Rejection and treatment of QCD background
- W A_L paper published, W cross section paper in preparation
- Forward tracking upgrade, large luminosity & polarization allow STAR to access helicity of the sea quarks