Dijet Production in Polarized Proton-Proton Collisions at 200 GeV at STAR

> Matthew Walker for the STAR Collaboration

Outline

- Brief theoretical motivation
- Experimental Overview
- Cross Section Analysis
- Asymmetry Analysis
- Status of ongoing analysis

Theoretical Motivation

 Polarized DIS tells us that the spin contribution from quark spin is only ~30%.

D. de Florian et al., Phys. Rev. D71, 094018 (2005).

D. de Florian et al., Phys. Rev. Lett. 101 (2008) 072001

R Matthew Walker, MIT

Theoretical Motivation

Inclusive jets

 Run 6 results: GRSV-MAX/ GRSV-MIN ruled out, a gluon polarization between GRSV-std and GRSV-zero favored

See Pibero Djawotho's talk for more on inclusive jets from STAR

	PHENIX 	$15 \\ \Delta \chi_i^2 \\ 10 \\ 5 \\ (b) \\ 0 \\ 2 \\ 0$
-0.2 0 0.2		
Δg D. de Florian et al. PBL 101 (2008) 072001.		
	A _{LL} systematics	(x 10 ⁻³)
	Reconstruction + Trigger Bias	[-1,+3] (p _T dep)
	Non-longitudinal Polarization	~ 0.03 (p _T dep)
	Relative Luminosity	0.94
	Backgrounds	1 st bin ~ 0.5 else ~ 0.1
	p _T systematic	± 6.7%

TAR Matthew Walker, MIT

Correlation Measurements

- Reconstructing multiple physics objects (di-jets, photon/jet) provides information about initial parton kinematics
- STAR well suited for correlation measurements with its large acceptance

$$x_{1} = \frac{1}{\sqrt{s}} (p_{T3}e^{\eta_{3}} + p_{T4}e^{\eta_{4}})$$

$$x_{2} = \frac{1}{\sqrt{s}} (p_{T3}e^{-\eta_{3}} + p_{T4}e^{-\eta_{4}})$$

$$M = \sqrt{x_{1}x_{2}s}$$

$$\eta_{3} + \eta_{4} = \ln \frac{x_{1}}{x_{2}}$$

Matthew Walker, MIT

Experimental Setup

- RHIC produces polarized proton beams up to 250 GeV in energy
- Siberian snake magnets in the AGS and RHIC help protect beam from depolarized resonances

Matthew Walker, MIT

April 12, 2011

SPIN 2011 7

Jet Terminology

Tracks, Energy Depositions

Detector Effects

Hadrons, Leptons

Parton Branching, Hadronization, Underlying Event

Partons

Data

- + 2006 Data: 5.39 pb⁻¹ taken during RHIC Run 6
- 2009 Data: ~10 pb⁻¹ taken during RHIC Run 9
- Jet Patch Trigger:
 - 1x1 in φxη patch of towers in the BEMC (400 towers)
- Midpoint Cone Algorithm with Split-Merge
- + Cone Radius: 0.7
- Seed 0.5 GeV

SPIN 2011

10

Matthew Walker, MIT

Data/Simulation Run 6

Matthew Walker, MIT

2006 Simulation:

- 11 STAR MC productions producing 4M events with partonic pT between 3 GeV and 65 GeV
- PYTHIA 6.410, CDF Tune A

10⁴

10³

10²

10

1

0

-1

Run 6 data and simulation agreement is good

2006 Cross Section

- Unpolarized differential cross section between 24 and 100 (GeV/c²)
- NLO theory predictions using CTEQ6M provided by de Florian with and without corrections for hadronization and underlying event from PYTHIA
- Statistical Uncertainties as lines, systematics as rectangles

2006 Cross Section

Comparison to theory (including hadronization and underlying event correction) shows good agreement within systematic uncertainties

STAR Matt

Matthew Walker, MIT

$2006 \text{ Asymmetry} \\ A_{LL} = \frac{1}{P_B P_Y} \frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}}$

- Asymmetry formula:
 - N⁺⁺: like sign yields
 - N⁺⁻: unlike sign yields
 - R: relative luminosity
 - P: polarization

2006 Asymmetry

- Run 6 Longitudinal double helicity asymmetry
- Systematic uncertainties show effects on trigger efficiency from different theory scenarios
- Scale uncertainty (8.3%)
 from polarization
 uncertainty not shown

Matthew Walker, MIT

2009 Simulation

- Different detector, different trigger, updated geometry
- 9 STAR MC productions with partonic $p_T > 2$ GeV
- PYTHIA 6.4.23, proPt0 (PYTUNE 329)
- Virtual Machine prepared with STAR software stack and deployed to over 1000 machines
- Run using cloud computing resources at Clemson University in South Carolina (Ranked #85 best supercomputer)
- Over 12 billion events generated by PYTHIA, filtered to allow only 36 million to undergo detector simulation (GEANT3), and 10 million through full reconstruction
- Took over 400,000 CPU hours and generated 7 TB of files transferred to BNL
- Largest physics simulation on cloud, largest STAR simulation

SPIN 2011

16

Matthew Walker, MIT

Data/Simulation Run 9

Matthew Walker, MIT

April 12, 2011

SPIN 2011 17

Run 9 Asymmetry

Matthew Walker, MIT

March 29, 2011

18

Kinematic Sensitivity

March 29, 2011

Matthew Walker, MIT

19

Summary

- Correlations measurements provide constraints on parton kinematics, which helps constrain the shape of $\Delta g(x)$
- 2006 Dijet cross section (5.39 pb⁻¹) shows good agreement with NLO calculations
- First Dijet double-spin asymmetry (FOM = 0.59 pb⁻¹) from
 2006 data suggests preference away from GRSV-std scenario
- 2009 Dijet asymmetry analysis underway with FOM = 1.21 pb⁻¹ analyzed to date, and more to come, allows for the first separation into multiple pseudorapidity acceptances

TAR Matthew Walker, MIT

Backup

2009 Projections

R Matthew Walker, MIT

2009 Asymmetry

 $A_{LL,j} = \frac{\sum_{k} \alpha_{jk} (\sum_{i} P_{B,i} P_{Y,i} (N_{5,i,k} + N_{10,i,k}) - P_{B,i} P_{Y,i} R_i (N_{6,i,k} + N_{9,i,k}))}{\sum_{k} \alpha_{jk} (\sum_{i} P_{B,i}^2 P_{Y,i}^2 (N_{5,i,k} + N_{10,i,k}) + P_{B,i,j}^2 P_{Y,i,j}^2 R_i (N_{6,i,k} + N_{9,i,k}))}$

- + The value of A_{LL} in a bin j is given by the above formula
 - + α_{jk} are the matrix elements for the unfolding
- Changing the jet energy scale results in different unfolding matrices
- The calculation is repeated for the different matrices to get the uncertainty on A_{LL} due to the jet energy scale

TAR Matthew Walker, MIT

Dijet Run 9 Projected

Matthew Walker, MIT

April 12, 2011

SPIN 2011 24