Recent Heavy Ion Results from STAR

Olga Evdokimova for the STAR collaboration

- STAR program at RHIC
- Data collection (e.g. collection of data-sets)
- Selected recent results
 - Beam energy scan
 - Jets, jet-like correlations and medium properties
 - STAR Heavy flavor program
- Summary and outlook

Relativistic Heavy Ion Collider

• Design goal - studies of phase structure of nuclear matter

• Counter-rotating ion beams $p \rightarrow U$

Maximum center-of-mass energy: 200 GeV for Au+Au 500 GeV for *pp*

AA Data Collection

STAR Physics Program

- Polarized pp program
 - Focus on proton's intrinsic properties *(not a part of this talk)*

• Forward Physics program

- Low-x physics, initial conditions, CGC
- Elastic and inelastic processes in *pp2pp* (not a part of this talk)
- QCD matter under Extreme Conditions
 - sQGP Studies (EoS, E_{loss} in QCD medium,...)
 - Beam energy scan (QCD critical point

chiral symmetry restoration,...)

Part 1 – Beam Energy Scan

- Vary the beam energies to scan the (T,μ_B) space
- Look for turn-on/turn-off of sQGP signatures, onset of deconfinement
- Search for QCD critical point/first order phase transition

TAR

What are the sQGP signatures?

• From not-so-recent results:

- High density opaque medium
- Partonic collectivity
- Deconfinement

In multiple measurements,

- Strong anisotropy in the final state, including Ω and ϕ !
- Low p_T mass ordering, consistency with hydrodynamic calculations
- Higher $p_T NCQ$ scaling

High precision identified hadron v2 results from high statistics 200 GeV Au+Au

- Central data: baryon-meson splitting, NCQ scaling (to ~10% level)
- Peripheral data: break-down of scaling features for multi-strange hadrons
- Even high p_T anisotropy related to jet attenuation (also in R_{AA})

Back to BES program

- Disappearance of partonic DOF signals
 - disappearance of NCQ scaling
 - disappearance of hadron suppression
 - disappearance of ridge
 - ...

• Signals of Critical Point & 1st order phase transition

- non-monotonic variations in fluctuation observables
- divergence of correlation length (higher moments of net-proton distribution)

$$<\!(\delta N)^2 > \approx \xi^2, <\!(\delta N)^3 > \approx \xi^{4.5}, <\!(\delta N)^4 > -3 <\!(\delta N)^2 >^2 \approx \xi^7$$

• elliptic & directed flow

- Broken trend in Ω/ϕ ratio at 11.5 GeV
- No clear baryon/meson grouping for antiparticles at 11.5 GeV & below
- New feature: Differences between baryon & anti-baryon v2 at lower energies

Nuclear modification factor R_{CP}

- Disappearance of baryon-meson splitting at intermediate p_T
- Suppression \rightarrow (Cronin) enhancement

Charge Separation Observable

- Motivated by search for local parity violation. Require sQGP formation.
- The splitting between correlations for like-sign and opposite sign pairs disappears at/below 11.5 GeV

STAR

Proton Directed Flow

- The slope of proton $v_I(y)$ distribution is expected to be sensitive to 1st order phase transition
- Proton v₁ changes slope between 7.7 and 11.5 GeV
- Net-proton v₁ slope becomes negative between 7.7 and 11.5 GeV

STAR

Higher Moments of Netproton Distribution

$$\sigma^{2} = \langle (N - \langle N \rangle)^{2} \rangle$$

$$S = \langle (N - \langle N \rangle)^{3} \rangle / \sigma^{3}$$

$$\kappa = \langle (N - \langle N \rangle)^{4} \rangle / \sigma^{4} - 3$$

Possible deviations from Poisson baseline in most central collisions at low energies

Need higher precision measurements for conclusive statement

STAR BES program

- Very successful start of the program Phase-I
- Several "QGP-signatures" are not seen at low energies
 - NCQ scaling breaks down for multistrange particles <=11.5
 - Charge separation signal vanishes
 - Change in v2 systematic between particles and antiparticles
- Critical point / 1st order phase transition
 - Proton v1 slope changes sign between 7.7 and 11.5 GeV
 - Inconclusive signs from higher moments (and monotonic behavior in second moments, e.g. ratio fluctuations)
- Stay tuned for Phase-II

• From not-so-recent results:

- High-pT hadron suppression (factor of 5 in central events)
- Suppression/modifications of away-side azimuthal correlations
- Both due to final state effects: jet-quenching

Di(multi)-hadron correlations

Full jet reconstruction

...and their combinations

Olga Evdokimov University of Illinois at Chicago

18 10-15 September 2012

$$D_{AA}(p_T^{assoc}) = Y_{AuAu}(p_T^{assoc}) \cdot \langle p_T^{assoc} \rangle_{AuAu} -Y_{pp}(p_T^{assoc}) \cdot \langle p_T^{assoc} \rangle_{pp}$$

- Trigger jet (near-side) population is highly (surface) biased
- Recoil (away-side) jet fragmentation should be unbiased
- Away-side Energy Balance:
 Suppression of high-p_T associated hadron yields is (mostly) balanced by low-p_T enhancement

Jet v_2 : correlation between jets and the event plane, probes path-length dependence of the jet quenching.

Non-zero jet v₂{FTPC EP}: path-length dependence of energy loss

	Olga Evdokimov	20
Baldin ISHEPP 2012	University of Illinois at Chicago	10-15 September 2012

Jet-like Correlations: Ridge

From not-so-recent results:

- Discovered first in Au+Au collisions at RHIC
- Extends to acceptance boundary and to the highest trigger p_T measured
- Production mechanisms for jet and ridge differ

The ridge open question:

manifestation of the jet quenching or coincidental nuisance?

Ultra-central Events

Motivation for " v_n fit"

FIG. 2: (Color online) Azimuthal anisotropies of hadron spectra $v_n(p_T)$ (n = 1 - 6) in central (b = 0) Au + Au collisions at $\sqrt{s} = 200$ GeV from AMPT model calculation.

Baldin ISHEPP 2012

STAR

Olga Evdokimov University of Illinois at Chicago

22 10-15 September 2012

Long Range Correlation – Fourier fits

• Comparison with flow:

- Long range correlations near- and away from the trigger are tested via Fourier decomposition
- Could be simultaneously described via higher order v_n terms
- v_n fit results are consistent with flow expectations

TAR

Multihadron Correlations: Di-jets

• 2+1 to study di-jets

- Central Au+Au ~ d+Au. No away-side suppression
- Shapes of near- and away-sides are similar
 - no significant shape/yield modifications
 - no apparent ridge

2+1 Residuals: Au+Au – d+Au

Jet energy ~ Σp_T within the 0.5x0.5 ($\Delta \eta \ x \ \Delta \phi$)

Relative energy imbalance $\Delta \Sigma E_T = (near-away)|Au+Au-d+Au$

Observed trends indicates softening of fragmentation function for di-jets selected

Part 2: Summary

STAR jet-medium interaction studies

- Consistent picture from jet-h and h-h correlation
 - Triggered jets and leading hadrons>4GeV/*c* select unmodified jet sample ("surface bias")
 - Jet-h and 2+1 correlation results suggest softening of fragmentation for selected di-jets
- Jet v₂
 - Azimuthal anisotropy of jets is indicative of path-length dependence of energy loss
- The origins of "ridge"
 - Could be flow...

- Expected to be less affected by strong interactions in the medium →early-time probes
- Sensitive tool to access gluon distribution
- Test medium properties on different levels (color screening effects, coalescence contributions)

D^0 Spectra and R_{AA} in 200 GeV Au+Au collisions

• Suppression at high p_T in central and mid-central collisions

- Enhancement at intermediate p_T
- Early freeze-out/smaller radial flow compared to light-quark hadrons

Heavy Flavor Energy Loss

Non-photonic electron R_{AA} in 200 GeV Au+Au collisions

DGLV: Djordjevic, PLB632, 81 (2006)
T-Matrix: Van Hees et al., PRL100,192301(2008).
Coll. Dissoc. R. Sharma et al., PRC 80, 054902(2009).
Ads/CFT: W. Horowitz Ph.D thesis.

- Strong suppression of heavy flavor at high p_T
- Expect significant improvement of uncertainties with analysis on the new *pp* data
- Begin to provide quantitative constraints on models: models with radiative energy loss seem to underpredicts the suppression

TAR

Quarkonia Measurements

J/ψ Spectra in 200 GeV Au+Au collisions

- J/ψ spectra significantly softer than light hadrons:
 - smaller radial flow?
 - Significant regeneration contributions?
- Let's look at $J/\psi v_2$: if charm quark flows, so will J/ψ from recombination! But will need a combination of open/closed HF measurement to disentangle different scenarios

STAR

Finite J/ ψ v2 at low p_T: charm coalescence?

0

Upsilon Measurements

STAR

- A cleaner probe than J/ψ :
 - Negligible recombination contributions

0 to 10% centrality

N_{e+e-}

 $N_{e+e+}+N_{e-e-}$

 $N_{e+e-} = 243$

S = 103 +/- 19.6

Preliminarv

11

Mee (GeV/c²)

 $N_{e+e+} = 74$

 $N_{e-e-} = 66$

STAR

- Low co-mover absorption
- Quarkonia melting is sensitive to the medium temperature
- Significant Ysuppression in central collisions
- Consistent with melting of 2S and 3S states

STAR Heavy Flavor program:

• Charm flows

- Significant v_2 for NPE, D⁰ flow
- Early freeze-out/smaller radial flow than light hadrons
- From J/ψ studies coalescence dominance is disfavored at high p_T
- Charm energy loss
 - Significant suppression of NPE and D^0 at high p_T
- Upsilon suppression
 - Consistent with full S3 and strong S2 melting

Advancement of STAR HF capabilities:

- Direct reconstruction of heavy flavor decays
- B-tagging via J/ψ displaced vertex
- Muon identification and trigger $(B \rightarrow J/\psi \rightarrow \mu\mu + X, B$ -jet tagging)
- Measurement of Upsilon states
- QGP thermal radiation (background constraints through e-µ correlations)