

Neutral Pion Cross Section and Spin Asymmetries at $0.8 < \eta < 2.0$ and $\sqrt{s} = 200$ GeV at STAR

Adam Gibson Valparaiso University

For the STAR Collaboration

DNP 2013 Newport News, Virginia October 24, 2013

- Gluon helicity distribution is one contributor to the total proton spin
- $\Delta g(x)$, for 0.05 < x < 0.2, constrained to be above zero by recent RHIC measurements
 - But relatively poorly constrained at x < 0.05
- How to move to lower x?
 - Measure inclusive $\pi^0 A_{LL}$ farther forward, e.g. for $1 < \eta < 2$ in the STAR endcap electromagnetic calorimeter (EEMC)
 - Main subprocess is qg scatering, with the gluon usually at small x

- Transverse spin asymmetry, A_N , known to be large at forward η for π^0 's
- Known to be small at central η in π^0 's and jets
- With the EEMC we can measure A_N in a less-constrained $x_F p_T$ range
 - Probably small, but may be able to test for p_T dependence
- Plan:
 - Measure π^0 cross section, A_{LL} , and A_N

- 2006 dataset at STAR
 - 8.0 pb⁻¹ of good quality data analyzed for cross section
 - 4.8 pb⁻¹ for A_{LL}
 - $2.8\ pb^{\text{--}1}$ for A_{N}
- Future years datasets for EEMC waiting to be analyzed:
- 2009: 25 pb⁻¹ delivered at 200 GeV, longitudinal polarization
- 500 GeV longitudinally polarized data in 2011 and 2012
- 500 GeV transverse in 2011, 200 GeV in 2012

STAR's Endcap Electromagnetic Calorimeter

mount-

ing

ring

SS back

nlate

post-

shower

Pb/SS

plastic

scint

- Scintillating strip SMD
 - $-\phi$ segmented into 12 sectors
 - Two active planes
 - 288 strips per plane
- Resolution of a few mm

- Nucl. Instrum. Meth. A 499 (2003) 740.
- Lead/scintillator sampling EM calorimeter
 - Covers $1.09 < \eta < 2.00$ over full 2π azimuth
 - 720 optically isolated projective towers (~22 X_0)
 - 2 pre-shower, 1 post-shower layers, and an additional shower maximum detector (SMD)
- Photon trigger places thresholds on maximum tower energy and the 3x3 patch of surrounding towers

October 24, 2013

- EM Particle Reconstruction Procedure
 - Identify clusters in the u and v strips
 - Determine which u and v clusters to associate with incident particles
 - Compute energy of incident particles (e.g. photons) from the towers
 - Compute momentum from the vertex and SMD cluster positions
- SMD response (right) in π^0 candidate event from data
 - Blue histograms show energy response per strip
 - Red triangles represent clusters drawn at mean strip position, and 10% of the cluster energy
- SMD clusters are found by
 - Smoothing the histogram using the method of J. Tukey
 - Identifying clusters as a strip above an energy threshold, with +-3 adjacent strips with monotonically decreasing energy
 - Setting cluster position to energy-weighted mean position of strips
- EM particle candidates built from pairs of u-v clusters
 - Clusters matched by energy of u and v strips
 - Required to have associated tower energy above threshold
 - Often have e.g. two photons from one π^0 deposited in one tower
- Reconstruction difficulties include
 - Upstream passive material: π^0 opening angle on the same order as photon conversions
 - Single particles sometimes look like two particles, and vice versa

- Inclusive π^0 mass distribution fit to templates, in bins of $\pi^0 p_T$
 - Signal
 - Conversion BG (π^0 candidate is from gamma \rightarrow e+ e-)
 - All other BG (extra or missing photons, π^0 candidate is gamma and e-, etc.)
 - Shapes from MC, relative fraction (and thus signal fraction) extracted from fit to data
- Lowest analyzed bin is 5-6 GeV $\pi^0 p_T$
 - Data-MC agreement unsatisfactory below this
 - Large amount of passive material, not well modeled
- Unfolded cross section calculated with a "smearing matrix"
 - Dominant systematic is EEMC energy scale
 - Consistent with NLO pQCD (Stratman numbers)
 - B. Jaeger et al., Phys. Rev. D 67, 054005 (2003) CTEQ 6.5, DSS FF

p. 7

A_{LL} in π^0 + X at STAR for $0.8 < \eta < 2.0$ **Result shown for the first time!**

- Raw longitudinal asymmetry corrected for
 - Luminosity asymmetries (small)
 - Beam polarizations
 - Background asymmetries
 - Estimated from mass sidebands, and consistent with zero (with uncertainty ~ 0.01)
- Statistical error (bars) dominate
- Systematic error (boxes)
 - Signal fraction uncertainties from template fits
 - Uncertainty on background asymmetry
- Integrated across p_T probably constrains GRSV Δg -max?
- arXiv:1309.1800, submitted to Phys. Rev. D

- Raw transverse asymmetry corrected for
 - Beam polarizations
 - Background asymmetries
 - Estimated from mass sidebands, and consistent with zero (with uncertainty ~ 0.01)
- Plotted in bins of $\pi^0 p_T$ (integrated over 0.06 < x_F < 0.27), and in bins of x_F
- Statistical error (bars) dominate
- Systematic error (boxes)
 - − Signal fraction uncertainties from template fits
 - Uncertainty on background asymmetry
 - Possible single-beam backgrounds
- Twist-3 prediction
 - K. Kanazawa and Y. Koike,
 - Phys. Rev. D 83, 114024 (2011)

- 2009 dataset offers a number of advantages
 - 3.5 times the 2006 lum. for 200 GeV, long. pol. ⁶⁰⁰
 - Reduced passive material in front of the endcap ⁵⁰⁰⁰ calorimeter ⁴⁰⁰⁰
 - Although the photon triggers have a higher threshold
- Lower and higher p_T jet triggers offer new possibilities
 - Lower threshold integrated over bigger patch of towers

- Today showing a glimpse at only a tiny fraction of the 2009 datasets
- Larger jet trigger patch allows events with more jet background, softer π^0
- Background somewhat higher than for photon triggers
 - But can probe to considerably lower π^0 pT
 - Very reasonable π^0 peak
 - Possibility to extend reach to lower x?
- Work remains on MC validation, understanding of π^0 's in "jettier" environment, etc.

- Successful analysis of inclusive π^0 's in 2006 data
 - Cross section, longitudinal and transverse asymmetries at 200 GeV
 - arXiv:1309.1800, submitted to Phys. Rev. D
 - A long time in preparation, good to wrap it up! And open door for future EEMC measurements
- Prospects for higher luminosity datasets in the future
 - A_{LL} and A_N are statistically limited measurements, at present
 - Continue to explore less-constrained kinematic regions
 - Complementary to other probes
 - Non-zero A_{LL} as for jets? Non-zero A_N as for forward π^0 's?
- 2009 200 GeV longitudinal data in hand
 - 3.5 times the integrated luminosity of 2006
 - Less passive material in front of the endcap calorimeter (EEMC)
 - Access to lower $p_T \pi^0$'s on jet triggers looks appealing
 - Large enough dataset for a direct photon measurement?
- 2011 and 2012 datasets will allow 500 GeV measurements, and a return to transverse measurements

Backup Plots/Slides

____Data/Monte Carlo Comparison

- Plots shown for $\pi^0 p_T$ in 8-9 GeV
- Pythia tune 329, "Pro-pT0"
- Agreement generally good for $\pi^0 p_T > 6 \text{ GeV}$
- 5 < p_T < 6 GeV usable, but has higher systematic uncertainty
- ► Sampled lumi. of 8 pb⁻¹

-

STAR

A. Gibson, Valparaiso; STAR Pi0 Asymmetry

Computing the Cross Section

• The unfolded number of π^0 s per p_T bin is computed as

$$N_i^{(\pi^0)} = \sum_j S_{i,j}^{-1} f_j s_j N_j^{(\text{raw})}$$

- ► *S* is the smearing matrix
- f accounts for π^0 s smeared into the p_T range from outside
- ► *s* is the signal fraction
- N^(raw) is the raw number of counts in the π⁰ peak window.
- The cross section is computed as

$$E\frac{d^{3}\sigma}{d\boldsymbol{p}^{3}} = \frac{1}{2\pi}\frac{1}{\Delta\eta}\frac{1}{\Delta p_{T}}\frac{1}{\langle p_{T}\rangle}\frac{1}{\epsilon}\frac{1}{\mathrm{B.R.}}\frac{N^{(\pi^{0})}}{\mathcal{L}}$$

- Physical η is in (0.8, 2.0), thus $\Delta \eta = 1.2$.
- The p_T bin width, Δp_T , varies between 1 and 4 GeV.
- The total efficiency ϵ is the product of the trigger and reconstruction efficiencies.
- The branching ratio for $\pi^0 \rightarrow \gamma \gamma$ is 0.98823 (PDG)

Transverse Spin Asymmetry A_N Analysis

Raw asymmetry

$$\mathcal{E}(\phi) = \frac{\sqrt{\alpha^{\uparrow}\beta^{\downarrow}} - \sqrt{\alpha^{\downarrow}\beta^{\uparrow}}}{\sqrt{\alpha^{\uparrow}\beta^{\downarrow}} + \sqrt{\alpha^{\downarrow}\beta^{\uparrow}}}$$

• Fit
$$\mathcal{E}(\phi)$$
 to $p_0 + \varepsilon \sin \phi$

- The background is subtracted from ε using same procedure as for longitudinal asymmetries.
 - Background asymmetries again within 1σ of zero with $\sigma \approx 0.01$.
- A_N obtained by scaling background subtracted ε by one over the luminosity weighted polarization.
- Systematics include
 - Uncertainty on the signal fraction
 - Uncertainty on the background asymmetry estimate
 - ϕ -dependent single beam backgrounds.