Neutral Pion Cross Section and Spin Asymmetries at $0.8<\eta<2.0$ and $\sqrt{s}=200 \mathrm{GeV}$ at STAR

Adam Gibson
Valparaiso University

For the STAR Collaboration

DNP 2013 Newport News, Virginia
October 24, 2013

Motivation: Probe Spin Dynamics in LessConstrained Kinematic Regions

- Gluon helicity distribution is one contributor to the total proton spin
- $\Delta \mathrm{g}(\mathrm{x})$, for $0.05<\mathrm{x}<0.2$, constrained to be above zero by recent RHIC measurements
- But relatively poorly constrained at $\mathrm{x}<0.05$
- How to move to lower x ?
- Measure inclusive $\pi^{0} \mathrm{~A}_{\mathrm{LL}}$ farther forward, e.g. for $1<\eta<2$ in the STAR endcap electromagnetic calorimeter (EEMC)
- Main subprocess is qg scatering, with the gluon usually at small x

STAR π^{0} 's at low and high p_{T}, for sqrt(s) 200 GeV

- Transverse spin asymmetry, A_{N}, known to be large at forward η for π^{0},
- Known to be small at central η in π^{0} s and jets
- With the EEMC we can measure A_{N} in a less-constrained $x_{F}-p_{T}$ range
- Probably small, but may be able to test for p_{T} dependence
- Plan:
- Measure π^{0} cross section, A_{LL}, and A_{N}

p. 3

Datasets from RHIC at STAR

- 2006 dataset at STAR
- $8.0 \mathrm{pb}^{-1}$ of good quality data analyzed for cross section
- $4.8 \mathrm{pb}^{-1}$ for A_{LL}
- $2.8 \mathrm{pb}^{-1}$ for A_{N}
- Future years datasets for EEMC waiting to be analyzed:
- 2009: $25 \mathrm{pb}^{-1}$ delivered at 200 GeV , longitudinal polarization
- 500 GeV longitudinally polarized data in 2011 and 2012
- 500 GeV transverse in 2011, 200 GeV in 2012

STAR STAR's Endcap Electromagnetic Calorimeter

- Nucl. Instrum. Meth. A 499 (2003) 740.
- Lead/scintillator sampling EM calorimeter
- Covers $1.09<\eta<2.00$ over full 2π azimuth
- 720 optically isolated projective towers ($\sim 22 \mathrm{X}_{0}$)
- 2 pre-shower, 1 post-shower layers, and an additional shower maximum detector (SMD)
- Photon trigger places thresholds on maximum tower energy and the 3×3 patch of surrounding towers

Particle Reconstruction in the EEMC

- EM Particle Reconstruction Procedure
- Identify clusters in the u and v strips
- Determine which u and v clusters to associate with incident particles
- Compute energy of incident particles (e.g. photons) from the towers
- Compute momentum from the vertex and SMD cluster positions
- SMD response (right) in π^{0} candidate event from data
- Blue histograms show energy response per strip
- Red triangles represent clusters drawn at mean strip position, and 10% of the cluster energy
- SMD clusters are found by
- Smoothing the histogram using the method of J. Tukey
- Identifying clusters as a strip above an energy threshold, with +-3 adjacent strips with monotonically decreasing energy
- Setting cluster position to energy-weighted mean position of strips
- EM particle candidates built from pairs of $u-v$ clusters
- Clusters matched by energy of u and v strips
- Required to have associated tower energy above threshold
- Often have e.g. two photons from one π^{0} deposited in one tower
- Reconstruction difficulties include

- Upstream passive material: π^{0} opening angle on the same order as photon conversions
- Single particles sometimes look like two particles, and vice versa
A. Gibson, Valparaiso; STAR Pi0 Asymmetry

October 24, 2013

STAR
 π^{0} Background and Cross-Section Computation

- Inclusive π^{0} mass distribution fit to templates, in bins of $\pi^{0} \mathrm{p}_{\mathrm{T}}$
- Signal
- Conversion BG (π^{0} candidate is from gamma \rightarrow e+ e-)
- All other BG (extra or missing photons, π^{0} candidate is gamma and e-, etc.)
- Shapes from MC, relative fraction (and thus signal fraction) extracted from fit to data

- Lowest analyzed bin is 5-6 $\mathrm{GeV} \pi^{0} \mathrm{p}_{\mathrm{T}}$
- Data-MC agreement unsatisfactory below this
- Large amount of passive material, not well modeled
- Unfolded cross section calculated with a "smearing matrix"
- Dominant systematic is EEMC energy scale
- Consistent with NLO pQCD (Stratman numbers)
- B. Jaeger et al., Phys. Rev. D 67, 054005 (2003) CTEQ 6.5, DSS FF ${ }^{6}$

A_{LL} in $\pi^{0}+\mathrm{X}$ at STAR for $0.8<\eta<2.0$ Result shown for the first time!

- Raw longitudinal asymmetry corrected for
- Luminosity asymmetries (small)
- Beam polarizations
- Background asymmetries
- Estimated from mass sidebands, and consistent with zero (with uncertainty ~ 0.01)
- Statistical error (bars) dominate
- Systematic error (boxes)
- Signal fraction uncertainties from template fits
- Uncertainty on background asymmetry
- Integrated across p_{T} probably constrains GRSV Δ g-max?
- arXiv:1309.1800, submitted to Phys. Rev. D

A_{N} in $\pi^{0}+\mathrm{X}$ at STAR for $0.8<\eta<2.0$

- Raw transverse asymmetry corrected for
- Beam polarizations
- Background asymmetries
- Estimated from mass sidebands, and consistent with zero (with uncertainty ~ 0.01)
- Plotted in bins of $\pi^{0} \mathrm{p}_{\mathrm{T}}$ (integrated over $0.06<\mathrm{x}_{\mathrm{F}}<0.27$), and in bins of x_{F}
- Statistical error (bars) dominate
- Systematic error (boxes)
- Signal fraction uncertainties from template fits
- Uncertainty on background asymmetry
- Possible single-beam backgrounds
- Twist-3 prediction
- K. Kanazawa and Y. Koike,
- Phys. Rev. D 83, 114024 (2011)

Prospects with 2009 Data for A_{LL}

- 2009 dataset offers a number of advantages
- 3.5 times the 2006 lum. for 200 GeV , long. pol.
- Reduced passive material in front of the endcap calorimeter
- Although the photon triggers have a higher threshold
- Lower and higher p_{T} jet triggers offer new possibilities

- Lower threshold integrated over bigger patch of towers

Prospects with 2009 Data, cont.

- Today showing a glimpse at only a tiny fraction of the 2009 datasets
- Larger jet trigger patch allows events with more jet background, softer π^{0}
- Background somewhat higher than for photon triggers
- But can probe to considerably lower $\pi^{0} \mathrm{pT}$
- Very reasonable π^{0} peak
- Possibility to extend reach to lower x ?
- Work remains on MC validation, understanding of π^{0} 's in "jettier" environment, etc.

A. Gibson, Valparaiso; STAR Pi0 Asymmetry

Conclusions and Outlook

- Successful analysis of inclusive π^{0} s in 2006 data
- Cross section, longitudinal and transverse asymmetries at 200 GeV
- arXiv:1309.1800, submitted to Phys. Rev. D
- A long time in preparation, good to wrap it up! And open door for future EEMC measurements
- Prospects for higher luminosity datasets in the future
- \mathbf{A}_{LL} and \mathbf{A}_{N} are statistically limited measurements, at present
- Continue to explore less-constrained kinematic regions
- Complementary to other probes
- Non-zero $A_{L L}$ as for jets? Non-zero A_{N} as for forward π^{0} 's?
- 2009200 GeV longitudinal data in hand
- 3.5 times the integrated luminosity of 2006
- Less passive material in front of the endcap calorimeter (EEMC)
- Access to lower $\mathrm{p}_{\mathrm{T}} \pi^{0}$'s on jet triggers looks appealing
- Large enough dataset for a direct photon measurement?
- 2011 and 2012 datasets will allow 500 GeV measurements, and a return to transverse measurements

Backup Plots/Slides

-Data/Monte Carlo Comparison

- Plots shown for $\pi^{0} p_{T}$ in $8-9 \mathrm{GeV}$
- Pythia tune 329, "Pro-pT0"
- Agreement generally good for $\pi^{0} p_{T}>6 \mathrm{GeV}$
- $5<p_{T}<6 \mathrm{GeV}$ usable, but has higher systematic uncertainty
- Sampled lumi. of $8 \mathrm{pb}^{-1}$

Computing the Cross Section

- The unfolded number of $\pi^{0} \mathrm{~s}$ per p_{T} bin is computed as

$$
N_{i}^{\left(\pi^{0}\right)}=\sum_{j} S_{i, j}^{-1} f_{j} s_{j} N_{j}^{(\mathrm{raw})}
$$

- S is the smearing matrix
- f accounts for $\pi^{0} \mathrm{~S}$ smeared into the p_{T} range from outside
- s is the signal fraction
- $N^{(\text {raw })}$ is the raw number of counts in the π^{0} peak window.

- The cross section is computed as

$$
E \frac{d^{3} \sigma}{d \boldsymbol{p}^{3}}=\frac{1}{2 \pi} \frac{1}{\Delta \eta} \frac{1}{\Delta p_{T}} \frac{1}{\left\langle p_{T}\right\rangle} \frac{1}{\epsilon} \frac{1}{\mathrm{~B} . \mathrm{R} .} \frac{N^{\left(\pi^{0}\right)}}{\mathcal{L}}
$$

- Physical η is in $(0.8,2.0)$, thus $\Delta \eta=1.2$.
- The p_{T} bin width, Δp_{T}, varies between 1 and 4 GeV .
- The total efficiency ϵ is the product of the trigger and reconstruction efficiencies.

- The branching ratio for $\pi^{0} \rightarrow \gamma \gamma$ is 0.98823 (PDG)

Transverse Spin Asymmetry \boldsymbol{A}_{N} Analysis

- Raw asymmetry

$$
\varepsilon(\phi)=\frac{\sqrt{\alpha^{\uparrow} \beta^{\downarrow}}-\sqrt{\alpha^{\downarrow} \beta^{\uparrow}}}{\sqrt{\alpha^{\uparrow} \beta^{\downarrow}}+\sqrt{\alpha^{\downarrow} \beta^{\uparrow}}}
$$

- Fit $\mathcal{E}(\phi)$ to $p_{0}+\varepsilon \sin \phi$
- The background is subtracted from ε using same procedure as for longitudinal asymmetries.
- Background asymmetries again within 1σ of zero with $\sigma \approx 0.01$.
- A_{N} obtained by scaling background subtracted ε by one over the luminosity weighted polarization.
- Systematics include
- Uncertainty on the signal fraction
- Uncertainty on the background asymmetry estimate
- ϕ-dependent single beam backgrounds.

