Recent Open Heavy Flavor Results from STAR

Mustafa Mustafa (for the STAR Collaboration) Lawrence Berkeley National Lab.

2014 RHIC & AGS Users' Meeting

June, 2014 BNL, NY

Outline:

I. Introduction.

II. Recent results:

- 1. Charm cross-section in p+p at 200 and 500 GeV.
- 2. D⁰ measurement and Nuclear Modification Factor in Au+Au at 200 GeV and U+U at 193 GeV.
- 3. Non-photonic electrons spectra and azimuthal anisotropy.

III. Heavy Flavor Tracker physics program.

Heavy quarks as probes of sQGP

Heavy quarks are *almost exclusively* created through initial hard scattering at RHIC. Thus, they experience all the stages of medium evolution — their kinematics carry information about their interaction with the medium.

Measurement can be eventually used to extract medium properties (gluon density, \hat{q} , drag and diffusion coefficients, etc ...) through different models.

Heavy quarks as probes of sQGP

Heavy quarks are *almost exclusively* created through initial hard scattering at RHIC. Thus, they experience all the stages of medium evolution — their kinematics carry information about their interaction with the medium.

Measurement can be eventually used to extract medium properties (gluon density, \hat{q} , drag and diffusion coefficients, etc ...) through different models.

Observables:

- 0 Nuclear modification factor
 - Study flavor dependence of partons energy loss.
- 0 Azimuthal Anisotropy
 - Low $\mathbf{p}_{\mathrm{T}} \, \mathrm{v}_{2} \, (< 2 \, \mathrm{GeV/c})$
 - Charm flow testing the thermalization of the bulk matter.
 - > Important to understand the contribution to $J/\psi v_2$ in a recombination scenario.
 - High $\mathbf{p}_{\mathrm{T}} \, \mathrm{v}_{2}$ (>6 GeV/c).
 - > path length dependence of energy loss.

STAR 🛠

Experimental Setup

Particle identification

Low p_T (< 1 GeV/c) using TOF+TPC

Electrons

Mustafa Mustafa - RHIC/AGS 2014 - BNL

Reconstructing open heavy flavor

Semi-leptonic channels

Proxy for direct reconstruction. High $\boldsymbol{p}_{_{T}}$ reach.

Reconstructing open heavy flavor

Topological reconstruction

Results

Charm cross-section in p+p at $\sqrt{s} = 200 \text{ GeV}$

New measurement of $D^0 \log p_{T}$ (0-0.7) constrains the total charm cross-section.

Charm cross-section in p+p at $\sqrt{s} = 500 \text{ GeV}$

Measurement extends to high $p_{T.}$ Very good agreement with FONLL calculation.

Total charm cross-section in p+p

Measurements are in agreement with pQCD calculations and world data trend.

 D^{0} in Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Enhancement at $p_T \sim 1.5$ GeV in all centralities. Suppression at high- p_T in most central bin.

 D° in U+U at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Suppression and enhancement features in U+U are similar to Au+Au.

System size dependence of high- \mathbf{p}_{T} suppression

Suppression of D^0 production closely follows that of pions across different system sizes.

Total charm cross-section in Au+Au

Number of binary collision scaling of charm cross-section is observed in different system sizes at RHIC top energy.

Comparison to models:

- Models with collisional energy loss + coalescence reproduce the R_{AA} features at low and high p_{T} .

- Torino model with hadronization only through fragmentation doesn't reproduce the bump.

- LANL energy loss which include mesons dissociation also reproduce the level of observed suppression.

- Does CNM contribute to the observed enhancement?

Non-photonic electrons \mathbf{v}_2

Models which assume strong charm-medium coupling are consistent with the data within the current uncertainties.

Charm flows at RHIC top energy?

Searching for the onset energy of strong charm-medium coupling :

STAR 🛧

Searching for the onset energy of strong charm-medium coupling :

- Enhancement at intermediate p_{T} and no sign of suppression compared to pQCD calculations and ISR measurements.

Searching for the onset energy of strong charm-medium coupling :

- Enhancement at intermediate $\boldsymbol{p}_{_{T}}$ and no sign of suppression compared to pQCD calculations and ISR measurements.

- $v_{_2}$ {2} is consistent with zero at 62.4, 39 GeV, and statistically different from 200 GeV for $p_{_{\rm T}}$ < 1 GeV/c.

Summary:

- New charm production measurement in p+p at 200 and 500 GeV are improved and consistent with pQCD calculations.

- D⁰ suppressed (\mathbf{p}_T >3 GeV/c), enhanced (\mathbf{p}_T <2. GeV/c) in Au+Au and U+U central collisions compared to charm production in p+p collisions.

- Finite v_2 of non-photonic electrons at top RHIC energy, consistent with zero at lower energies.

- Enhancement of non-photonic electrons production at 62.4 GeV compared to ISR and pQCD calculations.

STAR Heavy Flavor Tracker (HFT)

Heavy Flavor Tracker (HFT):

	Radius (cm)	σ _{r-φ} (μm)	σ _z (μm)	X/X ₀
SSD	22	20	740	1%
IST	14	170	1800	<1.5%
PXL	8 and 2.9	7.6	7.6	0.4%/layer

Cosmic ray event

Au+Au 200 GeV

HFT performance and data taking in Run14:

DCA resolution for tracks with 1 IST hit + 2 PXL hits is ~ 30 μ m at high p_T . Below project goal of 60 μ m for kaons at 750 MeV.

Au+Au @ 200 GeV data taking successfully ended on June 16^{th} with STAR reaching its goals.

Physics in the **HFT** era

Charm medium interaction and energy loss:

Estimated for 1B good minimum-bias events.

Physics in the **HFT** era

Separate charm and bottom measurements:

Estimated for 1B good minimum-bias events and 1 $nb^{\mbox{--}1}\,HT$ trigger.

Using impact parameter distribution we can separate charm and bottom contributions to electrons from heavy flavor decays (Y. Zhang et. al. JPG 41, 25103).

Physics in the **HFT** era

Charmed hadrons chemistry in heavy-ion collisions:

Does a coalescence or a modified fragmentation scenario change the charmed hadron chemistry D^0/D , D^{+-}/D , D_s/D compared to production in vacuum?

How does strangeness enhancement and coalescence change D_s/D compared to in vacuum fragmentation?

How about a charmed baryon enhancement (Λ_c/D^0) ?

Based on 2B minimum-bias + 250 central events (Requested for Run 16).

Outlook:

STAR **Heavy Flavor Tracker** has taken data during Run 2014 and simulations show promising physics results.

Run 2014	Run 2015	Run 2016	
	p+Au $\sqrt{s_{_{ m NN}}}$ = 200 GeV		
Au+Au $\sqrt{s_{_{\rm NN}}} = 200$	$p+p \sqrt{s} = 200 \text{ GeV}$	Au+Au $\sqrt{s_{_{\rm NN}}} = 200$	
${ m D}^{ m o}~{ m v}_{_2}~{ m and}~{ m R}_{_{ m cp}}$	Address CNM effects	Charm hadron chemistry	
Separate charm/bottom NMF	HFT p+p baseline	$({\rm D_{s}}/{\rm D^{0}},{\rm D^{+-}}/{\rm D^{0}},{\Lambda_{\rm c}}/{\rm D^{0}})$	

