RHIC/AGS Annual Users Meeting

June 9-12, 2015

Beam Use Request for Run 15

Based on 22 cryo weeks for in 2015 \rightarrow 17 weeks for physics

System	Energy	Duration	Polarization	Priority	Sequence
p + Au	$\sqrt{s_{NN}} = 200 \text{ GeV}$	5 weeks	Transverse	1	3
p + p	$\sqrt{2} - 200 \text{ CeV}$	6 weeks	Transverse	2	2
	$\sqrt{s} = 200 \text{ GeV}$	6 weeks	Longitudinal	2	1

double longitudinally polarized p + p collisions, L = 50 pb⁻¹, P = 60%
 single transversely polarized p + p collisions, L = 40 pb⁻¹, P = 60%
 single transversely polarized p + Au collisions, L = 300 nb⁻¹, P = 60%
 also unpolarized for Au + Au reference

1 Hot & Dense Medium Effects

- > Precision measurement: R_{AA}
- $\succ D^0$ mesons with tight *z*-vertex
 - $|z_{vtx}| < 5 \text{ cm}$
- Heavy Flavor Tracker
 - Commissioned in Run 14

<u>Run 15:</u>

➢ p + p reference $\sqrt{s} = 200$ GeV

- Combination of
 - minimum bias low- p_T
 - triggered high-p_T

Heavy Quarkonia

In-medium dissociation in thermal QCD system

- Evidence of color screening and free quarks in medium
- \succ Ratio of different $\Upsilon(1s)/\Upsilon(2s)/\Upsilon(3s)$ -states: $\Upsilon → \mu^+ + \mu^-$

Compare suppression Au + Au, p + Au, p + pof J/ ψ

- Muon Telescope Detector
 - Commissioned in Run 14

1 Gluon Polarization in the Proton

- → With recent RHIC data: $\int_{0.05}^{1} \Delta g(x) dx = 0.2^{+0.06}_{-0.07}$
- \succ Improve statistics at high- p_T for jet measurements
 - Low-p_T systematics limited

2 Universality in QCD

Process dependence of spin-orbit correlations in nucleons

- Sign-change in TMD *Sivers* function: SIDIS vs. Drell-Yan
- Equivalent description in twist-3: $gT_{q,F}(x,x) = \int d^2k_{\perp} \frac{|k_{\perp}|^2}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)$
- $q + g \rightarrow q + \gamma$ at forward rapidities ($3 \leq \eta \leq 4$)

2 Spin Dependent Fragmentation

Use spin dependent fragmentation as analyzer for transversity

- π^{\pm} -jet correlations (provides two scales for TMD framework)
- dihadron fragmentation (collinear framework)

3 Saturation in Cold Nuclear Matter

- Gluon saturation signature in transverse single spin asymmetries A_N
 - Color Glass Condensate calculations Phys. Rev. D84, 034019 (2011) → A_N suppression depends on saturation scale Q_S^p
 - Saturation is enhanced in nuclei: $Q_S^A = A^{1/3} \cdot Q_S^p$

Can we see the onset of saturation?

1 Diffractive Processes

Pomeron exchange

- color singlet combination of gluons
- central exclusive production for glue ball search at low missing p_T

- Origin of transverse single spin asymmetries
- Single diffractive dissociation / elastic scattering with increased statistics and extended *t*-range

Run 15 Timeline

PAC recommendations:

- 9 weeks of $\vec{p} + \vec{p}$, $\sqrt{s} = 200 \text{ GeV}$
- 5 weeks of $\vec{p} + Au$
- 2 weeks of $\vec{p} + Si$
- 2014/12/03 West pole tip closed
- 2015/01/20 Cool down to 4 K, watch shifts ready
- 2015/02/03 First collisions at $\sqrt{s} = 200$ GeV, full shift crews
- 2015/02/10 Start of physics program in $\vec{p} + \vec{p}$ FMS/FPS commissioning (gain iterations, trigger ready)
- 2015/03/10 Changing to transverse polarization
- 2015/04/02 Back to longitudinal polarization
- 2015/04/27 End of $\vec{p} + \vec{p}$
- 2015/05/04 Start of physics program in $\vec{p} + Au$
- 2015/06/08 Changing to $\vec{p} + Al$
- 2015/06/22 Begin cryo warm-up

180 p⁺p[†] luminosity projections 100 GeV 160 Integrated luminosity [pb⁻¹] Projected 140 maximum 120 100 80 Projected minimum 60 40 Run-12 achieved 20 0 2 7 8 9 0 5 Weeks in physics production

Preshower at Forward Rapidities

Forward Meson Spectrometer

FMS Status at the end of Run 13

Radiation damage: discoloration of PbGl

FMS Refurbishing in 2014

Replacement of PMT and bases

Curing of radiation damage

PbGl transparency after UV curing

FMS Performance in Run 15

- The FMS is in its best shape ever!
- Gains balanced for p_Ttriggering
- Signs of radiation damage (not unexpected)

Forward Preshower Construction

Scintillator hodoscope 4.0 / 5.8 cm wide, 1 cm thick

- Double pyramid light guide
- SiPM readout
- Three layers for 2d hit reconstruction
- 3 × 84 channels
- Pb converter (d = $1 X_0$)

Wrapping at BNL

Built in complete quadrants ($\approx 100 \text{ kg}$)

Compact installation

Preshower Performance in Run 15

Monitoring of dark current in SiPM Collision related Very susceptible to background

Roman Pot Detectors

▶ pp2pp setup from ≈ 55 m → 15 m ▶ No special machine settings required

PP2PP Performance in Run 15

dE/dx in all layers

- Very successful operation
 - pp2pp team & shift crew
- Fast-offline alignment studies

HFT Performance in Run 15

PXL damage in run 14

- Improved protection against latch-up
- Refurbished inner ladders (Al)
- Rate limit in SSD
 - Longer internal busy time 1.2 ms
 - Reduced common mode noise

PXL inner layer 4% dead sensors

- outer layer 5% dead sensors
- IST >92% active APV chips
- SSD lost 1 out of 20 ladders 6% dead wafers

90% of strips active

Data Taking

DUNNING the DOD				16083018 production_pp200trans_2015 [PH							Run started Tue Mar 24 08:47:57 2015					
			o [philoi						csj	Dura	tion 0	days, 0 hr, 23	3 min, 38 s			
											Blue	100.	1 GeV, 194	36 ions, Physi	cs Running	
In progress				Kondy for Physics							Yellow	 100.1 GeV, 21048 ions, Physics Running 				
				Physic	S UN (430	m) [Keep L	ep seamj				TCU Clo	ck 9383	k 9383147.0			
	Ĩ.			Ĩ.	í la					Î.		1				
Trigger	DAQ Evts	DAQ Hz	L0 Evts	LO Hz	Sca Hz	Sca Dead	Built	Trigger	DAQ Evts	DAQ Hz	L0 Evts	L0 Hz	Sca Hz	Sca Dead	Built	
RP_SD	8378	7	8379	6	722208.7	22 %	8377	BHT1*VPDMB-30	199662	152	199745	156	184	17 %	199662	
RP_SDT	32961	22	32974	24	83066.1	22 %	32960	BHT0*BBCMB	1929	1	1930	1	10159	11 %	1929	
RP_RPZMU	5580	3	5584	5	5	0 %	5580	BHT1*BBCMB	1835	1	1836	1	1637	11 %	1835	
RP_RPZE	3247	3	3249	3	4	25 %	3247	BHT2*BBCMB	100959	61	100994	64	76	8 %	100959	
RP_RP2MU	6046	2	6048	2	7	29 %	6046	singlemuon-5	48794	38	48810	37	411	12 %	48794	
RP_RP2E	6221	2	6223	4	8	25 %	6221	emuon-30	35026	23	35043	29	37	11 %	35026	
RP_CPT2	313386	222	313509	241	1457	20 %	313383	dimuon	106804	66	106831	62	89	10 %	106803	
RP_ET	57505	37	57513	40	154536.1	18 %	57504	bbc-mtdcosmic	11544	8	11548	9	1048	10 %	11544	
RP_CP	42167	26	42185	31	174302.2	22 %	42165	FMS-sm-bs1	71966	47	71978	51	3162	8 %	71966	
RP_Zerobias	115	1	1156	1	9383145	22 %	1155	FMS-sm-bs2	193254	127	193276	124	307	7 %	193253	
RP_CPEI	933	cine	9330	mi	240 f	1Q +	ria	gore t	hrou	iah	rin	114	123	8 %	188594	
BHT1*VPDMB-30-nobsmd	221362	2115	322 a 21	161		40 l	LIS:	gersi		Igu		51	13222	8 %	72292	
<u>JP2</u>	272 591	207	272715	238		10 %	272587	FMS-lq-bs2	139761	103	139776		163 <mark>)</mark>	8 %	139761	
JP2-bsmd	246336	189	0.20	-hi			f-670	ur nh	veine	σ^{17}	20		181	10 %	230211	
AJP	4557	4	U ₅₅₉ ar	-31 I I	253 V C		4557		y_31C.	5.80	ais		115	10 %	125269	
EHTO	30433	20	30448	21	32	9 %	30433	TM3-JPZ	135072	105	135081	100	105	9 %	135072	
JP1	400227	275	400386	303	1790	21 %	400225	FMS-JP1	383609	262	383663	275	711	9 %	383609	
JP2*L2JetHigh	272591	207	272715	238	256	10 %	272587	FMS-JP0	76011	56	76021	52	7270	8 %	76010	
EHT0*EJP1*L2Egamma	25923	23	25936	24	28	11 %	25923	FMS-DIJP	37273	19	37277	21	32	19 %	37273	
BHT2*BJP1*L2Bgamma	87842	49	87874	54	76	14 %	87842	FMS-LED	1242	1	1242	1	1	0 %	1242	
VPDMB-5-trgonly	4968	4	4968	3	25675	8 %	4968	VPDMB-novtx	1809	1	1810	1	423078.4	11 %	1808	
VPDMB-5-ssd	636837	444	637102	474	25675	56 %	636835	ZDCMB-trgonly	2944	2	2944	2	2939	7 %	2944	
BBCMB	1031	1	1031	1	1195761.1	12 %	1030	VPDMB-30	1239	1	1239	1	150921.1	11 %	1238	
BHTO*VPDMB-5	24342	20	24350	17	200	8 %	24342	ZEROBIAS	978	2	979	1	9383145	65 %	977	
								ALL	3483182	2528	3483558	2549	9383145	0 %	3482512	

Run 15 Performance

over 80% live

- average DAQ dead time 15%
- take data when PHYSICS ON
- optimized balance of triggers

Trigger Bandwidth in $\vec{p} + \vec{p}$

Trigger Bandwidth in $\vec{p} + \vec{p}$

p + p Reference

All p + p goals reached or exceeded for heavy ion reference data in 2015!

- Transverse polarization
- Single spin asymmetries: figure of merit $\propto P^2 \cdot \mathcal{L}$
- Based on $\mathcal{L} = 40 \text{ pb}^{-1}$, P = 60%
- *The incident*: loss of four days due to power dip
- Achieved original projections from BUR in four weeks!

 $\vec{p} + \vec{p}$ Goals

Transverse asymmetries from ZDC scalers € phys 0.06 Yellow 0.05 Blue 0.04 0.03 0.02 0.01 0 18873 18883 18869 8866 8876 8868

- Longitudinal polarization
- Figure of Merit $\propto P^4 \cdot \mathcal{L}$
- Based on
 - $\mathcal{L} = 50 \text{ pb}^{-1}$
 - P = 60%
- Spin Rotator Efficiency
 - Transverse component $P_{\perp}/P < 10\%$
 - Polarization decay $\delta P/(P \cdot \delta t) \approx 2\%/h$
- Falling short of originally projected goals for high-p_T

full transverse polarization: $\epsilon_{
m max} pprox 0.02$

Trigger Bandwidth in $\vec{p} + Au$

example fill 19100

+Au

- Transverse polarization
- Figure of Merit $\propto P^2 \cdot \mathcal{L}$
- Based on $\mathcal{L} = 300 \text{ nb}^{-1}$, P = 60%
- Roman pots only on proton side
- $\vec{p} + Au$ goals reached or exceeded!

Run 15 Summary

- Very successful operation in 2015
- Reached or exceeded goals
 - Reduced time compared to original beam use request
 - Only exception: highest p_T range in A_{LL} (jet)
 - New and unique: transversely polarized $\vec{p} + Au$ collisions

Recording $\vec{p} + Al$ collisions since early Tuesday morning...

Looking Forward 2017+

- Drell-Yan production in Run 17
 - $\vec{p} + p @ 500 \text{ GeV}$
 - Forward rapidities $3 < \eta < 4$ (FMS)
 - Refurbish preshower SiPM
 - Add tail catcher: hodoscope similar to preshower
- Inner TPC Upgrade
 - Increased active area, optimized pad size
 - $|\eta| < 1.5$
 - Improved $\Delta p/p$ and dE/dx

Event Plane Detector

- Large acceptance with radial segmentation
- Fine granularity (single hits)

Prototype at Shandong

EEMC megatile prototype in Run 15

