sTAR Overview of Recent Spin Physics Results from STAR

Adam Gibson
Valparaiso University

For the STAR Collaboration

DSPIN 2015
September 8, 2015

Photo courtesy of Bijan Saha

Contributions to the Proton's Spin

sTAR Understanding Spin in Proton Collisions at STAR

- Probing Gluon Polarization with Jets and π^{0} 's
- Probing Sea Quark Polarization with W's
- Probing Transverse Structure with Jets and π^{0} 's
- And with W's, Z's, and other probes
- Looking to the Future

Solenoidal Tracker at RHIC

Inclusive hadron measurements:

Solenoidal Tracker at RHIC

RHIC as Spin Collider

- "Siberian Snakes" \rightarrow mitigate depolarization resonances
- Spin rotators provide choice of spin orientation independent of experiment
- Spin direction varies bucket-to-bucket (9.4 MHz)
- Spin pattern varies fill-to-fill

Inclusive hadron measurements:
Barrel E/M Calorimeter (BEMC),
Endcap E/M Calorimeter (EEMC),
Forward Meson Spectrometer (FMS)
FPD (east) not shown

Jet and W/Z measurements:
TPC + Barrel + Endcap
EMC
A. Gibson, Valparaiso; Recent STAR Spin Results; DSPIN

September 8, 2015

Datasets from RHIC at STAR

- Many published results from 2006, 2009 datasets
- And W's more recently
- Preliminary results and work in progress from, especially
- 2011500 GeV trans.
- 2012200 GeV trans.
- Large 510 GeV long. datasets in 2012 and 2013
- 2015 brought increased statistics at 200 GeV , and
 opened the era of high-energy spin in $\mathrm{p}+\mathrm{A}$ collisions

Datasets from RHIC at STAR

- Many published results from 2006, 2009 datasets
- And W's more recently
- Preliminary results and work in progress from, especially
- 2011500 GeV trans.
- 2012200 GeV trans.
- Large 510 GeV long. datasets in 2012 and 2013
- 2015 brought increased statistics at 200 GeV , and opened the era of high-
 energy spin in $\mathbf{p}+$ A collisions
sTAR Understanding Spin in Proton Collisions at STAR
- Probing Gluon Polarizations with Jets and π^{0} 's
- Probing Sea Quark Polarization with W's
- Probing Transverse Structure with Jets and π^{0} s - And with W's, Z's, and other probes
- Looking to the Future

star Probing (Gluon) Polarized PDF's With Jets

$$
A_{L L}=\frac{\sigma^{++}-\sigma^{+-}}{\sigma^{++}+\sigma^{+-}} \propto \frac{\Delta f_{a} \Delta f_{b}}{f_{a} f_{b}} \hat{a}_{L L}
$$

$A_{L L}$ for, e.g. jets, sensitive to polarized PDF's (Δf) and partonic asymmetry, $\hat{a}_{L L}$

Asymmetries at different values of p_{T} or $\sqrt{ } s$ \rightarrow sample different mix of partonic subprocesses

September 8, 2015

Jet Reconstruction

2009 Inclusive Jet A_{LL}

- 2009 results have factor of 3 to 4 better statistical precision than 2006 results
- Result divided into two pseudorapidity ranges which emphasize different partonic kinematics
- Result lies consistently above the 2008 DSSV fit

- Integral of $\Delta \mathrm{g}(\mathrm{x})$ in range $0.05<\mathrm{x}<1.0$ increases substantially, now significantly above zero.
- Uncertainty shrinks substantially from DSSV* to new DSSV fit
- First firm evidence of non-zero gluon polarization!

- Integral of $\Delta \mathrm{g}(x)$ in range $0.05<x<1.0$ increases substantially, now significantly above zero.
- Uncertainty shrinks substantially from DSSV* to new DSSV fit
Uncertainty on integral over low x region is still sizable
[See also new NNPDF fit Nucl. $\int_{0.05} \mathrm{dx} \Delta \mathrm{g}(\mathrm{x})$
Phys. B887 (2014) $276-308$]

2012 Inclusive Jet A_{LL} at 510 GeV

- Push to lower $x_{g} \mathrm{w} /$ higher CoM
 energy
- $50 \mathrm{pb}^{-1}$ at 53% avg. polarization
- Smaller cone, $\mathrm{R}=0.5$ reduces effect of pileup
- Agrees well with latest predictions

2012 Inclusive Jet A_{LL} at 510 GeV

- Push to lower $x_{G} \mathrm{~W} /$ higher CoM
 energy
- $50 \mathrm{pb}^{-1}$ at 53% avg. polarization
- Smaller cone, $\mathrm{R}=0.5$ reduces effect of pileup
- Agrees well with latest predictions
- Higher CoM pushes to lower x_{T}
- Results agree in overlap region
- Higher 200 GeV statistics coming with 2015 dataset

Probing Low x Gluons With $\pi^{0} \mathrm{~A}_{\text {LL }}$

PRD 80, 111108(R) (2009)

$$
|\boldsymbol{\eta}|<0.95
$$

PRD 89, 012001 (2014)

Wissink SPIN2008

- STAR has measured $\pi^{0} \mathrm{~A}_{\text {LL }}$ in three different pseudorapidity ranges
- Different kinematics, different fragmentation, different systematics
- Here with data from 2006
${ }^{\bullet} q g$ scattering dominates at high η with high x quarks and low x gluons
-No large asymmetries seen
A. Gibson, Valparaiso; Recent STAR Spin Results; DSPIN

September 8, 2015

A_{LL} in $\pi^{0}+\mathrm{X}$ at STAR for $0.8<\eta<2.0$

- 2006 Dataset in the Endcap Electromagnetic Calorimeter (EEMC)
- Push to reasonably low x by going (relatively) forward
- Statistical error (bars) dominate
- Systematic error (boxes)
- Signal fraction uncertainties from template fits
- Uncertainty on background asymmetry
- Cross section and transverse

DSSV: First

$$
\text { PRL 101, } 072001 \text { (2008) }
$$

- NNPDFpol1.1 includes jet results from STAR and PHENIX, including the recently submitted 2009 STAR inclusive jets
- Greater precision needed to constrain the fit

$\pi^{0} \mathrm{~A}_{\mathrm{LL}}$ Prospects in 2012 Dataset

- Work underway at STAR with 2012 dataset (x10 the 2006 luminosity) at intermediate (endcap) pseudorapidity
- Large improvement in stat. uncertainty projected, as shown

- Higher CoM energy
- $200 \rightarrow 510 \mathrm{GeV}$
- Pushes to lower x gluon

Pb Glass EM Calorimeter pseudo-rapidity $2.7<\eta<4.0$ Small cells: $3.81 \times 3.81 \mathrm{~cm}$ Outer cells: $5.81 \times 5.81 \mathrm{~cm}$

FPD EM Calorimeter
Small cells only Two 7x7 arrays

Forward EM Calorimetry In STAR.

$\pi^{0} \mathrm{~A}_{\text {LL }}$ Prospects in Forward Calorimeters

- Pushing even further forward, with the FMS
- Preliminary with large 2012 and 2013 datasets at 510 GeV
- After prescales, effectively $46 \mathrm{pb}^{-1}$ in 2012, $\mathrm{p}_{\mathrm{T}}>2.5 \mathrm{GeV}$
- And $8 \mathrm{pb}^{-1}$ in 2013, $\mathrm{p}_{\mathrm{T}}>2.0 \mathrm{GeV}$
- An older preliminary result also exists, with the FPD (Wissink SPIN2008)
- Require isolation cone ${ }^{\vec{\alpha}} 0.025 \quad p p \rightarrow \pi^{0}+X$ STAR PRELIMINARY around $\pi^{0}{ }^{\prime} \mathrm{s}$ $0.02 \begin{aligned} & \sqrt{s}=510 \mathrm{GeV} \\ & 2.5<\eta<4\end{aligned}$
- Motivated by A_{N} increase for isolated $\pi^{0} \quad{ }_{0.01}$ E
- Now exploring isolation 0.005

statistical uncertainty
bin RMS

systematic uncertainty

STAR Understanding Spin in Proton Collisions at STAR

- Probing Gluon Polarizations with Jets and $\pi^{0}{ }^{3} \mathrm{~s}$
- Probing Sea Quark Polarization with W's
- Probing Transverse Structure with Jets and $\pi^{0}{ }^{9}$ s
- And with W's, Z's, and other probes
- Looking to the Future

STAR Probing Sea Quark Polarizations With W's

cen(d)

$$
\begin{aligned}
& u+\bar{d} \rightarrow W^{+} \rightarrow e^{+}+\nu \\
& d+\bar{u} \rightarrow W^{-} \rightarrow e^{-}+\bar{\nu}
\end{aligned}
$$

- W's couple directly to the quarks and antiquarks of interest
- Detect W's through $\mathrm{e}^{+} / \mathrm{e}^{-}$decay channels
- Longitudinally, excellent probes of sea quark polarizations
- Also an important probe of transverse physics
$\underset{\text { (Helicity flip in one beam while averaging over the other) }}{\text { Measure parity-violating single-spin asymmetry: } \quad A_{L}=\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}}}$

STAR Results from 2012 W's

arXiv:nucl-ex/1304.0079

W Projections

2011-2012 Results

Includes Forward GEM
Tracker at STAR, fully installed in 2013
star Understanding Spin in Proton Collisions at STAR

- Probing Gluon Polarizations with Jets and π^{0} 's
- Probing Sea Quark Polarization with W's
- Probing Transverse Structure with Jets and π^{0} 's
- And with W's, Z's, and other probes
- Looking to the Future

star Puzzle of Large Transverse Spin Asymmetries, A_{N}

- Anomalously large A_{N} observed for nearly 40 years
- In naïve, co-linear, leading-order/leading-twist QCD expect very small A_{N}, especially at high energy

$$
A_{N}=\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}}
$$

$d \sigma^{\uparrow(\downarrow)}$ - cross section for leftward scattering when beam polarization is spin-up(down)
A. Gibson, Valparaiso; Recent STAR Spin Results; DSPIN

Positive A_{N} - more π^{0} to left of (up) polarized beam

For a 2π detector, A_{N} manifests as an azimuthal (ϕ) asymmetry

star Puzzle of Large Transverse Spin Asymmetries, A_{N}

- Persists at STAR/RHIC
- At forward pseudorapidity
- At high x_{F}

p. 28

- Interesting features in A_{N}
-Persists to surprisingly large p_{T}
-Larger in η 's than π^{0} 's?
-In relatively isolated π^{0} 's, not in jets -Smaller when there's central activity
-Diffractive physics?
-New Roman Pots in 2015

A_{N} for Forward EM Events: Dependence on Jettiness

- 2011 Dataset in FMS, $22 \mathrm{pb}^{-1}$ with 52% pol., 500 GeV

Anti- k_{T} jet algorithm on FMS photons, $\mathrm{R}=0.7$

Mechanisms for Transverse Single-spin Asymmetries

Sivers mechanism: asymmetry in the forward jet or γ production
D. Sivers, PRD 41, 83 (1990); 43, 261 (1991)

Sensitive to proton spinparton transverse motion correlations (needs L_{z})

Collins mechanism: asymmetry in the forward jet fragmentation J. Collins, NP B396, 161 (1993)

Twist-3 mechanism: Asymmetry from multi-parton correlation functions
e.g. Qiu and Sterman, PRL 67, 2264 (1991); PRD 59, 014004 (1998)
e.g. Efremov, Teryaev

Correlators closely related to \boldsymbol{k}_{T} moments of TMD's
Boer, Mulders, Pijlman, NPB 667, 201 (2003)
A. Gibson, Valparaiso; Recent STAR Spin Results; DSPIN

Mechanisms for Transverse Single-spin Asymmetries

Sivers mechanism: asymmetry in the forward jet or γ production
D. Sivers, PRD 41, 83 (1990); 43, 261 (1991)

Sensitive to proton spinparton transverse motion correlations (needs L_{z})

Collins mechanism: asymmetry in the forward jet fragmentation J. Collins, NP B396, 161 (1993)

> Inclusive hadron asymmetries:
> Unable to islolate contributions
> Sivers, Collins, twist-3 $\sim \sin \left(\phi_{S}\right)$
> ϕ_{S}-angle between spin and event plane
A. Gibson, Valparaiso; Recent STAR Spin Results; DSPIN

Mechanisms for Transverse Single-spin Asymmetries

Sivers mechanism: asymmetry in the forward jet or γ production
D. Sivers, PRD 41, 83 (1990); 43, 261 (1991)

Sensitive to proton spinparton transverse motion correlations (needs L_{z})

Collins mechanism: asymmetry in the forward jet fragmentation J. Collins, NP B396, 161 (1993)

Separate Sivers and Collins:

Go beyond inclusive production - e.g. Jets, correlations, direct photons

$$
\text { Sivers } \sim \sin \left(\phi_{S}\right) \quad \text { Collins } \sim \sin \left(\phi_{S^{-}} \phi_{h}\right)
$$

ϕ_{S}-angle between spin and event plane
ϕ_{h}-angle of hadron around jet axis
A. Gibson, Valparaiso; Recent STAR Spin Results; DSPIN

Sivers and Collins Analyses for Jets at 200 GeV , early (2006) data set

STAR measured transverse single-spin asymmetries for inclusive jet production at central pseudorapidity and $\sqrt{ } s=200 \mathrm{GeV}$ (2006)
$A_{U T}^{\sin \left(\phi_{S}\right)} \quad$: consistent with zero $A_{U T}^{\sin \left(\phi_{S}-\phi_{h}\right)}$: hints of non-zero asymmetry with charge-sign dependence

star. 8° Prospects for Sivers and Collins Jet Analyses

2012 STAR data provide opportunity for higher precision and greatly reduced systematic uncertainties at $\sqrt{s}=200 \mathrm{GeV}$ analysis well underway

2011 STAR data provide opportunity for first measurements of central pseudorapidity inclusive jet asymmetries at $\sqrt{ } s=500 \mathrm{GeV}$
\rightarrow Increased sensitivity to gluonic subprocesses

New Collins Results at $\sqrt{ } s=200 \mathrm{GeV}$

First observation of
 Collins asymmetry in $p+p$!

Non-zero Collins

asymmetries observed at

 $V_{S}=500 \mathrm{GeV}$!- Consistent with $\sqrt{S}_{S}=200$ GeV results for consistent cuts and x_{T}
- Suggests slow TMD evolution from 200 to 500 GeV ?

Related first measurement (consistent with zero) of Collins-like asymmetries, sensitive to gluon linear polarization (J. Drachenberg, PANIC 2014)

Collins-like Asymmetries at $\sqrt{ } s=500 \mathrm{GeV}$

Present data sit well below maximized contribution of $\sim 2 \%$ at low z
Present data should provide first constraints on Collins-like effect (sensitive to linearly polarized gluons)
A. Gibson, Valparaiso; Recent STAR Spin Results; DSPIN

star Collins Asymmetries for π^{0} in Forward EM Jets

- 2011 Dataset in FMS $22 \mathrm{pb}^{-1}$ with 52% pol.
- Anti- k_{T} jet algorithm on FMS photons, $\mathrm{R}=0.7$
- Calculate Collins asymmetries for π^{0} within EM jets

- Hints of possible non-zero Collins asymmetries!

Transverse Asymmetries from Di-hadrons Another path to transversity: Di-hadron Asymmetries

Transverse Asymmetries from Di-hadrons

$$
\begin{gathered}
A_{U T}^{\sin \left(\phi_{R S}\right)} \propto h_{1} \otimes \boldsymbol{H}_{1}^{L} \quad \text { Survives in collinear } \\
\text { framework } \\
\phi_{R S}=\phi_{R}-\phi_{S} \\
\text { Angle between polarization vector } \\
\text { and di-hadron plane }
\end{gathered}
$$

Studying both jet + hadron and di-hadron asymmetries over range of collision energy:

- Extend kinematic reach beyond existing measurements
- Probe evolution of transversity and TMDs
- Probe open theoretical questions, e.g. TMD factorizationbreaking and universality

Transverse Asymmetries from Di-hadrons

Significantly non-zero di-hadron asymmetries
for charged pions at central

Significant, high-precision di-hadron asymmetries pseudorapidity

Non-zero Collins + Di-hadron Asymmetries

\rightarrow Access to transversity in $p+p$!

Transverse Asymmetries from Di-hadrons

Significantly non-zero di-hadron asymmetries for charged pions at central pseudorapidity
Significant non-zero IFF observed also at 500 GeV , increasing with pion pT (more bins available), with intriguing mass dependence
A. Gibson, Valparaiso; Recent STAR Spin Results; DSPIN

September 8, 2015

sTAR Understanding Spin in Proton Collisions at STAR

- Probing Gluon Polarizations with Jets and $\pi^{0} \mathrm{~s}$
- Probing Sea Quark Polarization with W's
- Probing Transverse Structure with Jets and π^{0} 's
- And with W's, Z's, and other probes
- Looking to the Future

Sivers Function and Sign Change Prospects at STAR with W, Z, Drell-Yan

- A_{N} in Drell-Yan, W/Z production at RHIC provide excellent complement to SIDIS
- Attractive from a theoretical perspective (no frag. func. needed as for π^{0} 's, etc.)
- Sivers function "famously" changes sign when comparing with transverse asymmetries from SIDIS
- Collins, J. C., 2002, Phys. Lett. B 536, 43
- Direct photon sign change as well
- Probe wide range of Q^{2}
- Test the universality and factorization of TMD's, constrain their evolution important tests of QCD
- Major targets for 2015-2017
- FMS (forward EM calorimetry) Preshower Upgrade in 2015
- Allows separation among photons, π^{0} 's, charged hadrons, and electrons
- Supports direct photon and DY measurements

STAR FMS-PreShower:

$\mathrm{A}_{\mathrm{N}}\left(\mathrm{W}^{+/-}, \mathrm{Z}^{0}\right)$ Results from 2011

- Preliminary results with $25 \mathrm{pb}^{-1}$ of data
- Projections for 2017 show $\mathrm{A}_{\mathrm{N}}\left(\mathrm{W}^{+/-}, \mathrm{Z}^{0}\right)$ will constrain sea quark Sivers distribution and make a statement on the Sivers sign change

S. Fazio and D. Smirnov PoS(DIS2014)237

- An excellent complement to SIDIS
- No fragmentation (and so no fragmentation function uncertainty)
- High Q^{2}
p. 45 - Sign flip
A. Gibson, Valparaiso; Recent STAR Spin Results; DSPIN

Near Future: Collins Projections

- Transversely polarized p Au collisions recorded for the first time in 2015
- Should allow for first glimpse of Collins asymmetries in $\mathrm{p}+\mathrm{A}$?
- Saturation effects?
- Long transverse run planned for 2017 at 500 GeV

A. Gibson, Valparaiso; Recent STAR Spin Results; DSPIN

September 8, 2015

star Understanding Spin in Proton Collisions at STAR

- Probing Gluon Polarizations with Jets and π^{0} 's
- Probing Sea Quark Polarization with W's
- Probing Transverse Structure with Jets and $\pi^{0}{ }^{0} \mathrm{~s}$ - And with W's, Z's, and other probes
- Looking to the Future
- Dijet measurements as one example

Dijet Measurements

- Inclusive measurements have been the workhorse of $\operatorname{STAR} \Delta \mathrm{G}$ program to date
- Broad x range sampled in each p_{T} bin
- Dijet or other correlation measurements which reconstruct the full final state are sensitive to initial kinematics at leading order
-Prospect of mapping out the shape of $\Delta \mathrm{g}(x)$

2009 Dijet Cross Section Results

Vertical black hashing stat. error
Green box is symmetric about data point and is the quadrature sum of all systematic errors

Blue box is theory error: renormalization and factorization scales $x 0.5, x 2$

Also a 2009 result at 500 GeV G. Webb PoS(DIS2013) 215

And a 2006 result from 200 GeV T. Sakuma, M. Walker, Journal of Physics: Conference Series 295, 012068 (2011).

Probing very low x gluons with Forward Calorimeter Upgrade: 2020

ECal:
Tungsten-Powder-Scintillating-fiber
2.3 cm Moliere Radius, Tower-size: $2.5 \times 2.5 \times 17 \mathrm{~cm}^{3}$ 23 X HCal:
Lead and Scintillator tiles, Tower size of $10 \times 10 \times 81 \mathrm{~cm}^{3}$ 4 interaction length
https://drupal.star.bnl.gov/STAR/starnotes/public/sn0605
STAR polarized $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{A}$ LoI

STAR Dijet Projections with the Forward Calorimeter Upgrade

$$
\sqrt{s}=500 \mathrm{Ge} V \quad \begin{aligned}
& -1<\eta<2 \\
& 2.8<\eta<3.7
\end{aligned}
$$

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0605 STAR polarized $p+p$ and $p+A$ LoI

Probe gluons to $x \sim 10^{-3}$
$\mathrm{L}=1 \mathrm{fb}^{-1}$
$P=60 \%$
B. Surrow PoS(DIS2014) 241

An attractive probe at rather low x before the EIC era

eRHIC and eSTAR (>2025) will offer

 unprecedented reach in Q^{2} and x

Spin Physics at STAR

- Inclusive Jets
- After 25 years, evidence of non-zero gluon polarization in the proton
- Pushing to lower \boldsymbol{x} gluons
- With forward detectors, sqrt(s) $=510 \mathrm{GeV}$, large datasets, detector upgrades
- W's and Z's improving our understanding of sea quark polarizations
- Exploration of transverse asymmetries, A_{N}, continues
- TMD (e.g Sivers, Collins) and Twist-3 phenomenology
- First observations of transversity in polarized $p+p$!
- Tests of universality, factorization, and evolution of TMD's
- Polarized p+A has begun
- Large datasets on hand, analyses underway
- 2011, 2012, 2013, 2015
- Detector upgrades continue
- FGT forward tracking 2013, forward calorimetry: FPS+FMS and RP 2015, FCS 2020
- Continuing data taking planned
- 2016, 2017, and beyond
- Stay tuned!

Backup

Collins-like Asymmetries at $\sqrt{ } s=500 \mathrm{GeV}$

Present data sit well below maximized contribution of $\sim 2 \%$ at low z
Present data should provide first constraints on Collins-like effect (sensitive to linearly polarized gluons)
A. Gibson, Valparaiso; Recent STAR Spin Results; DSPIN

A_{N} in $\pi^{0}+\mathrm{X}$ at STAR for $0.8<\eta<2.0$

- Transverse asymmetries for the EEMC mid-rapidity 2006 dataset
- Plotted in bins of $\pi^{0} \mathrm{p}_{\mathrm{T}}$ (integrated over $0.06<\mathrm{x}_{\mathrm{F}}<0.27$), and in bins of x_{F}
- Statistical error (bars) dominates over systematic error (boxes)
- Twist-3 prediction
- K. Kanazawa and Y. Koike,
- Phys. Rev. D 83, 114024 (2011)

Relativistic Heavy Ion Collider as a Spin Collider

Concert of Facilities

- OPPIS \rightarrow LINAC \rightarrow AGS \rightarrow RHIC

Polarized-proton Collider

- Mitigate effects of depolarization resonances with "Siberian Snakes"
- Polarization measured with CNI polarimeter
- Spin rotators provide choice of spin orientation independent of experiment

RHIC Beam Characteristics

- Clockwise beam: "blue"; counter-clockwise beam: "yelllow"
- Spin direction varies bucket-to-bucket (9.4 MHz)
- Spin pattern varies fill-to-fill

Recent Spin Results from STAR - Drachenberg

Solenoidal Tracker at RHIC

Recent Spin Results from STAR - Drachenberg

STAR STAR's Endcap Electromagnetic Calorimeter

- Nucl. Instrum. Meth. A 499 (2003) 740.
- Lead/scintillator sampling EM calorimeter
- Covers $1.09<\eta<2.00$ over full 2π azimuth
- 720 optically isolated projective towers ($\sim 22 \mathrm{X}_{0}$)
- 2 pre-shower, 1 post-shower layers, and an additional shower maximum detector (SMD)
- Photon trigger places thresholds on maximum tower energy and the 3×3 patch of surrounding towers
A. Gibson, Valparaiso; STAR Spin Highlights; ICNFP

STAR FGT Detector

Improve charged particle
 tracking at very forward angles

Obtain better measurement of W decay particles

Install 6 planes of GEM detectors

FGT = Forward GEM Tracker
GEM = gaseous electron multiplier

STAR Detector in 2014

HFT: Heavy Flavor Tracker, MTD: Muon Telescope Detector

STAR Detector in 2015-2016

FMS: Forward Meson Spectrometer, FPS: Forward Preshower, RP II*: Roman Pot Phase II*

STAR Detector in 2018-2019

iTPC: inner TPC, EPD: Event Plane and Centrality Detector, ETOF: End-cap TOF, Fixed Target ${ }_{42}$

STAR Detector in 2021-2022

FCS/FTS: Forward Calrimeter/Tracking System, RP II: Full Roman Pot Phase II

STAR Detector in 2025+

CEMC: Central EM Calorimeter, eTRK: electron Tracker, TRD: Transition Radiation Detector

eSTAR Detector in 2025+

The very successful STAR detector will evolve into an EIC detector

Proton Helicity Structure

Increased Precision at 200 GeV Coming Soon

\pm

- STAR also anticipates significant future reductions in the uncertainties for 200 GeV collisions relative to the 2009 results
- Hope to record triple the existing 200 GeV data during the 2015 RHIC run

STAR STAR's Endcap Electromagnetic Calorimeter

- Nucl. Instrum. Meth. A 499 (2003) 740.
- Lead/scintillator sampling EM calorimeter
- Covers $1.09<\eta<2.00$ over full 2π azimuth
- 720 optically isolated projective towers ($\sim 22 \mathrm{X}_{0}$)
- 2 pre-shower, 1 post-shower layers, and an additional shower maximum detector (SMD)
- Photon trigger places thresholds on maximum tower energy and the 3×3 patch of surrounding towers

π^{0} Background and Cross-Section Computation $0.8<\eta<2.0$ with 2006 Dataset

- Inclusive π^{0} mass distribution fit to MC templates, in bins of $\pi^{0} \mathrm{p}_{\mathrm{T}}$
- Signal
- Conversion BG (π^{0} candidate is from gamma \rightarrow e+ e-)
- All other BG (extra or missing photons, π^{0} candidate is gamma and e-, etc.)
- Shapes from MC, relative fraction (and thus signal fraction) extracted from fit to data

STAR π^{0} 's at low and high p_{T}, for sqrt(s) 200 GeV
(PYTHIA, unpolarized CTEQ 5L)

A_{LL} in $\pi^{0}+\mathrm{X}$ at STAR for $0.8<\eta<2.0$

- Statistical error (bars) dominate
- Systematic error (boxes)
- Signal fraction uncertainties from template fits
- Uncertainty on background asymmetry
- Integrated across p_{T} probably constrains GRSV $\Delta \mathrm{g}$-max?
- PRD 89, 012001 (2014)
- Cross section and transverse asymmetry also measured

PRD 63, 094005 (2001)
DSSV: First fit to include RHIC results
PRL 101, 072001 (2008)

$\pi^{0} \mathrm{~A}_{\mathrm{LL}}$ Prospects in 2012 Dataset

- Work underway at STAR with 2012 dataset (x10 the 2006 luminosity) at intermediate (endcap) pseudorapidity
- Large improvement in stat. uncertainty projected, as shown

- Higher CoM energy
- $200 \rightarrow 510 \mathrm{GeV}$
- Pushes to lower x gluon

$\pi^{0} \mathrm{~A}_{\mathrm{LL}}$ Prospects in 2012 Dataset

- Work underway at STAR with 2012 dataset (x10 the 2006 luminosity) at intermediate (endcap) pseudorapidity
- Large improvement in stat. uncertainty projected, as shown

Greatly magnified!

- Higher CoM energy
- $200 \rightarrow 510 \mathrm{GeV}$
- Pushes to lower x gluon

π^{0} Background and Cross-Section Computation $0.8<\eta<2.0$ with 2006 Dataset

- Inclusive π^{0} mass distribution fit to MC templates, in bins of $\pi^{0} \mathrm{p}_{\mathrm{T}}$
- Signal
- Conversion BG (π^{0} candidate is from gamma \rightarrow e+ e-)
- All other BG (extra or missing photons, π^{0} candidate is gamma and e-, etc.)
- Shapes from MC, relative fraction (and thus signal fraction) extracted from fit to data

- Lowest analyzed bin is 5-6 $\mathrm{GeV} \pi^{0} \mathrm{p}_{\mathrm{T}}$
- Data-MC agreement unsatisfactory below this
- Large amount of passive material, not well modeled
- Unfolded cross section calculated with a "smearing matrix"
- Dominant systematic is EEMC energy scale
- Consistent with NLO pQCD (thanks M. Stratmann)
- B. Jaeger et al., Phys. Rev. D 67, 054005 (2003) CTEQ 6.5, DSS FF ${ }^{6}$

A_{N} in $\pi^{0}+\mathrm{X}$ at STAR for $0.8<\eta<2.0$

- Transverse asymmetries as well!
- Plotted in bins of $\pi^{0} \mathrm{p}_{\mathrm{T}}$ (integrated over $0.06<\mathrm{x}_{\mathrm{F}}<0.27$), and in bins of x_{F}
- Statistical error (bars) dominates over systematic error (boxes)
- Twist-3 prediction
- K. Kanazawa and Y. Koike,
- Phys. Rev. D 83, 114024 (2011)

STAR at sqrt(s) 200 GeV

STAR Collins-like Asymmetries at $\sqrt{ } s=500 \mathrm{GeV}$

Gluon helicity density matrix $\rho=\frac{1}{2}\left(\begin{array}{cc}1+P_{\text {circ }} & -P_{l i n} e^{-2 i \phi} \\ -P_{\text {lin }} e^{2 i \phi} & 1-P_{\text {circ }}\end{array}\right)$

Off-diagonal terms related to linear polarization in (xy) plane at angle φ to x-axis Phys Rev. D 73, 014020 (2006)

Transverse Polarization Structure at STAR - Drachenberg

STAR Collins-like Asymmetries at $\sqrt{ } s=500 \mathrm{GeV}$

Present data sit well below maximized contribution of $\sim 2 \%$ at low z
Present data should provide first constraints on Collins-like effect (sensitive to linearly polarized gluons)

Transverse Polarization Structure at STAR - Drachenberg

Asymmetry Observable

- Calculated for $\boldsymbol{P}_{\boldsymbol{B}}$ as incident beam, $\boldsymbol{P}_{\boldsymbol{A}}$ as target
- Incident beam is polarized and target unpolarized by summing over bunches

$$
\varphi_{R S}=\varphi_{S}-\varphi_{R}
$$

- Pion separation $=\sqrt{ }\left(\Delta \eta^{2}+\Delta \phi^{2}\right)<0.7$
- $A_{U T} \propto h_{1} \cdot H_{1}^{<}$
- Transversity (h_{1})
- Interference Fragmentation Function (H_{1}^{2})
- $A_{U T}$ is expected to depend on the invariant mass ($\mathrm{M}_{\mathrm{Inv}}$) and p_{T} of the pion pair

M. Skoby, Spin 2014

Extract A_{UT}

- Particle $p_{T}>1.5 \mathrm{GeV} / \mathrm{c}$
- Pair $p_{T}>3.75 \mathrm{GeV} / \mathrm{c}$
- For a given $\mathrm{M}_{\mathrm{Inv}}, \mathrm{p}_{\mathrm{T}}$ bin the asymmetry is calculated for $8 \phi_{\text {RS }}$ bins
- The asymmetry is the amplitude extracted from a single-parameter fit
- Example shown here is one $M_{\text {Inv }}, p_{T}$ bin

$$
A_{U T}\left(\varphi_{R S}\right)=\frac{1}{P} \frac{\sqrt{N \uparrow\left(\varphi_{R S}\right) N \downarrow\left(\varphi_{R S}+\pi\right)}-\sqrt{N \downarrow\left(\varphi_{R S}\right) N \uparrow\left(\varphi_{R S}+\pi\right)}}{\sqrt{N \uparrow\left(\varphi_{R S}\right) N \downarrow\left(\varphi_{R S}+\pi\right)}+\sqrt{N \downarrow\left(\varphi_{R S}\right) N \uparrow\left(\varphi_{R S}+\pi\right)}}
$$

star STAR IFF Results at $\sqrt{ } s=500 \mathbf{G e V}$

Similar behavior observed in $\sqrt{ } s=200 \mathrm{GeV}$

Transverse Polarization Structure at STAR - Drachenberg

star 2009 Dijet Cross Section at 500 GeV

- Also a preliminary 2006 dijet cross section at 200 GeV
- T. Sakuma, M. Walker, Journal of Physics: Conference Series 295, 012068 (2011).

Theory: TMDs vs. Twist-3

Intermediate Q_{T}
$Q \gg Q_{T} / p_{T} \gg \Lambda_{Q C D}$

Need 2 scales Q^{2} and $\mathrm{P}_{\boldsymbol{+}}$
Remember pp:
most observables one scale
Exception:
DY, W/Z-production

$$
\begin{gathered}
\text { Need only } 1 \text { scale } \\
\mathbf{Q}^{2} \text { or } \mathbf{P}_{\boldsymbol{\dagger}} \\
\text { But } \\
\text { should be of reasonable size }
\end{gathered}
$$

should be applicable to most pp observables

$$
A_{N}\left(\pi^{0} / \gamma / \mathrm{jet}\right)
$$

A_{N} : How to get to THE underlying Physics

SIVERS/Twist-3 Collins Mechanism

A_{N} for jets, direct photonsA_{N} for heavy flavour \rightarrow gluonA_{N} for $W^{+/-}, Z^{0}$asymmetry in jet fragmentation$\square \pi^{+/-} \pi^{0}$ azimuthal distribution in jets
\square Interference fragmentation function

The famous sign change of the Sivers fct.

critical test for our understanding of TMD's and TMD factorization
Twist-3 formalism predicts the same

QCD:

DIS:
γq-scattering attractive FSI

Sivers $_{\text {DIS }}=-$ Sivers $_{\text {DY }}$ or Sivers ${ }_{w}$ or Sivers ${ }_{z 0}$
$\mathrm{A}_{\mathrm{N}}($ direct photon $)$ measures the sign change through Twist-3
will also be $\mathrm{A}_{\mathrm{N}}(\mathrm{DY})$ and $\mathrm{A}_{\mathrm{N}}\left(\mathrm{W}^{+/}, \mathrm{Z}^{0}\right)$ test of TMD evolution

All three observables can be attacked in one 500 GeV Run by STAR
E.C. Aschenauer

