Overview of Recent Results from the STAR Experiment

Mustafa Mustafa (for the STAR Collaboration)

Lawrence Berkeley National Laboratory

STAR Physics Program: Study Emergent Properties of QCD

Cold QCD

Polarized p+p/A:

- Study the partonic spin structure of protons
- Study proton and nuclear Parton
 Distribution
 Functions

STAR 🕁

Hot QCD:

<u>Top RHIC energy:</u> sQGP properties (η /s, \hat{q} , D_{HQ}, chirality, ...)

<u>Beam Energy Scan (BES):</u> Phase diagram

- onset of QGP
- phase transition
- critical point

Outline (updates since last QM)

- Heavy Flavor:
 - Heavy Flavor Tracker (HFT)
 - \rightarrow First result of D⁰ azimuthal anisotropy and nuclear modification factor
 - Muon Telescope Detector (MTD)
 - → Quarkonia via di-muon channels
- Beam Energy Scan I (BES-I) completed with $\sqrt{s_{_{NN}}}= 14.5 \ GeV$
- Chirality
 - Di-electrons
 - Chiral Magnetic Effects
 - Effects of E-field (Cu+Au)
- Jets

STAR Detector

EEMC

Magnet

BEMC

HFT

MTD

TPC

TOF

BBC

Time Projection Chamber **(TPC)** Time of Flight **(TOF)** Electromagnetic Calorimeter **(BEMC)** STAR – New Subsystems Muon Telescope Detector (MTD): Results from 30% of collected Au+Au data are presented at this conference

Heavy Flavor Tracker (HFT): Results from 70% of collected Au+Au data are presented at this conference [G. Contin (254)]

Particle Identification

Excellent long-lived hadron and electron identification

Particle Identification

Excellent long-lived hadron and electron identification

Secondary vertex reconstruction with HFT \rightarrow Full kinematics reconstruction of charmed hadron Muon/Quarkonia identification using MTD

Mustafa Mustafa - QM15 - Kobe, Japan

Topological Reconstruction of D^o

8

NEW

9

D^o Nuclear Modification Factor (R_{AA})

- Significant improvement in central Au+Au D⁰ measurement using HFT
- Enhanced D mesons for $p_{_{\rm T}}$ < 2 GeV/c
 - → Manifestation of charm coalescence with a flowing medium

D^o Nuclear Modification Factor (R_{AA})

- Significant improvement in central Au+Au D⁰ measurement using HFT
- Enhanced D mesons for $p_{_{\rm T}} < 2~GeV/c$
 - → Manifestation of charm coalescence with a flowing medium
- D mesons are suppressed at high $\mathbf{p}_{_{\mathrm{T}}}$
 - ightarrow R_{AA} (h) ~ R_{AA} (D)
 - → Charm energy loss is an interplay of elastic and radiative energy loss

STAR, PLB 655 (2007) 104

11

D^o Nuclear Modification Factor (R_{AA})

- Significant improvement in central Au+Au D⁰ measurement using HFT
- Enhanced D mesons for $p_{_{\rm T}} < 2~GeV/c$
 - → Manifestation of charm coalescence with a flowing medium
- D mesons are suppressed at high $\mathbf{p}_{_{\mathrm{T}}}$
 - ightarrow R_{AA} (h) ~ R_{AA} (D)
 - → Charm energy loss is an interplay of elastic and radiative energy loss → R_{AA} @ RHIC ~ R_{AA} @ LHC

STAR, PRL 113 (2014) 142301 ALICE, arXiv: 1509.06888

- NEW

12

D^{0} Azimuthal Anisotropy (v_{2})

 Finite D^o v₂ observed (p_T > 2 GeV/c) at top RHIC energy

D^{0} Azimuthal Anisotropy (v_{2})

- Finite D⁰ v₂ observed (p_T > 2 GeV/c) at top RHIC energy
- $D^0 v_2$ is lower than those of light hadrons for $p_T < 4.0$

→ What can we learn about charm thermalization with the medium?

STAR, PRC 77 (2008) 54901

13

+ NEW +

Comparison to Theory

Data favors models with charm diffusion
 → charm exhibits collectivity with the medium

	D × 2πT	Diff. Calculation
TAMU	2-11	T-Matrix

arXiv:1506.03981 (2015) & private comm.

Comparison to Theory

arXiv:1506.03981 (2015) & private comm.

NEW

Comparison to Theory

Data favors models with charm diffusion
 → charm exhibits collectivity with the medium

arXiv:1506.03981 (2015) & private comm.

Comparison to Theory II – Charm Diffusion Coefficient

- Models with charm diffusion coefficient of 2 \sim 10 describe STAR R_{AA} and v₂ data
- Lattice calculations are consistent with values inferred from data

Quarkonia in p+p highlights

18

- Correlation between relative J/ ψ yields and <u>relative charged particles multiplicity (event activity)</u>, and for higher multiplicities stronger than linear growth at $p_{\tau} > 4$ GeV/c observed
- PYTHIA 8 and Percolation Model describe the observed increase Percolation: Ferreiro et. al., PRC 86 (2012) 034903

* NEW *

Quarkonia in p+p highlights

- Correlation between relative J/ ψ yields and <u>relative charged particles multiplicity (event activity)</u>, and for higher multiplicities stronger than linear growth at $p_{\tau} > 4$ GeV/c observed
- PYTHIA 8 and Percolation Model describe the observed increase Percolation: Ferreiro et. al., PRC 86 (2012) 034903
- J/ ψ polarization (λ_{θ}): common trend towards strong negative values with x_{τ} (in the helicity frame)

Quarkonia in Au+Au

⁻ p_{τ} < 5 GeV/c: suppression in all centralities. Rising trend with p_{τ}

Consistent R_{AA} using di-muon and di-electron channels

Di-electron: PLB 722 (2013) 55, PRC 90, 024906 (2014)

Quarkonia in Au+Au

Di-electron: PLB 722 (2013) 55, PRC 90, 024906 (2014)

- + $p_{_{\rm T}} < 5$ GeV/c: suppression in all centralities. Rising trend with $p_{_{\rm T}}$
- Consistent R_{AA} using di-muon and di-electron channels
- Y signal observed in di-muon channel, full data production on the way.

NEW

Semi-Inclusive Charged Jets in Au+Au

Trigger-normalized yield of jets recoiling from a high p_{T} hadron trigger.

NEW

Mustafa Mustafa - QM15 - Kobe, Japan

Semi-Inclusive Charged Jets in Au+Au

Trigger-normalized yield of jets recoiling from a high p_T hadron trigger.

NEW

- Direct comparison to similar measurements at LHC
- Out-of-cone energy transport: hint of reduction for larger R; smaller vs. LHC
- Molière scattering of low energy jets in QGP: proof of principle

Quantifying the effect of Chiral Symmetry Restoration: Di-electrons

Acceptance-corrected dielectron excess mass in 27, 39, 62.4 GeV Au+Au, and 193 U+U collisions

•

NEW

In-medium p broadening ٠ calculations describe data across all collision energies, centralities and p_⊤

Theory: R. Rapp, PRC 63 (2001) 054907

STAR, PLB 750 (2015) 64 STAR, PRC 92 (2015) 024912

Quantifying the effect of Chiral Symmetry Restoration: Di-electrons

Acceptance-corrected low-mass dielectron excess production, normalized by dN_{ch}/dy , is proportional to the lifetime of the medium from 17.3 to 200 GeV

Given that the total baryon density is nearly a constant and that the emission rate is dominant in the near-T_c region.

R. Rapp, H. van Hees, arXiv:1411.4612

NEW

25

S. Yang, Electromagnetic Probes (290)

Quantifying the effect of Chiral Symmetry Restoration: Di-electrons

Acceptance-corrected low-mass dielectron excess production, normalized by dN_{ch}/dy , is proportional to the lifetime of the medium from 17.3 to 200 GeV

Given that the total baryon density is nearly a constant and that the emission rate is dominant in the near-T_c region.

R. Rapp, H. van Hees, arXiv:1411.4612

S. Yang, Electromagnetic Probes (290) 26

Study of Chiral Effects via PID Correlations

Chiral Magnetic Effect (CME): local chirality imbalance + magnetic field \rightarrow electric charge separation Chiral Vortical Effect (CVE): local chirality imbalance + fluid vorticity \rightarrow baryonic charge separation

Separation w.r.t reaction plane was studied via a three-point correlator

$$\gamma = \left\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\psi_{RP}) \right\rangle$$

Here α and β denote particle charge, γ_{os} – γ_{ss} quantifies the strength of charge separation

Correlation of different particle species \rightarrow different sensitivity to CME/CVE

Study of Chiral Effects via PID Correlations

Chiral Magnetic Effect (CME): local chirality imbalance + magnetic field \rightarrow electric charge separation Chiral Vortical Effect (CVE): local chirality imbalance + fluid vorticity \rightarrow baryonic charge separation

- A clear hierarchical structure was observed, which meets the expectation of chiral effects
- On-going background studies to decouple B-field, v₂ and charge separation
 - Select events with v₂ = 0 in non-central collisions
 [STAR, PRC, 89 (2014) 044908], much smaller effects
 observed
 - Collide nuclei with special configurations (²³⁸U+²³⁸U, ⁹⁶Ru+⁹⁶Ru, ⁹⁶Zr+⁹⁶Zr)
 - Measure impact of initial E-field independently (Cu+Au)

L. Wen – Poster (948)

B. Tu – Poster (123)

Mustafa Mustafa - QM15 - Kobe, Japan

Study of initial E-field via v_1 in Cu+Au

Sizable E-field pointing from Au to Cu \rightarrow Expect charge dependent v₁ relevant to CME/CMW NEW

quark/anti-quark creation time

- Δv₁ = v₁ (h⁺) v₁ (h⁻) shows the right sign as expected by the model with initial E-field
- E-field does leave an imprint. So should the B-field? (CME/CMW)

Au

Help constrain the initial quark/anti-quark production

- A suite of observables are studied for rapid changes and non-monotonicity
 - Directed, elliptic and triangular flow
 - Spectra, and nuclear modification factors
 - Femtoscopy
 - Higher moments

NEW

New measurements at $\sqrt{s_{NN}} = 14.5 \text{ GeV}$

STAR Preliminary

Search for the Onset of QGP Formation: Charged Hadrons R_{cp}

- Smooth transition from a strong suppression at high energies to enhancement at lower beam energies.
- Cronin effects play a bigger role at lower energies.

NEW

Search for the Onset of QGP Formation: Charged Hadrons R_{cp}

- Smooth transition from a strong suppression at high energies to enhancement at lower beam energies.
- Cronin effects play a bigger role at lower energies.
- Yields per binary collision show indicates a balance of enhancement and suppression effects at $\sqrt{s_{_{NN}}} = 14.5$ GeV.

Search for the Onset of QGP Formation: v_3

Triangular flow is argued to be almost directly proportional to the duration of the low-viscosity (η /s) phase [J. Aunvine, H. Petersen PRC 88, 064908]

- Sizable v_{3} at lower energies in central to mid-central centralities
- Peripheral collisions v $_{_3}$ consistent with zero for $\sqrt{s_{_{NN}}}$ less than 14.5 GeV

NEW

Search for the Onset of QGP Formation: v_3

 $n_{ch,PP} = dN_{ch}/d\eta/(N_{part}/2)$ is the multiplicity per participant pair, proportional to the system energy density

- Scaling out the increase in the system energy density reveals a flat trend $\sqrt{s_{NN}} = 7.7 20 \text{ GeV}$
- Signature of softening of EoS?

Search for Phase Transition: Directed Flow

 (Anti)-Lambdas dv₁/dy closely follow those of (anti)protons

 $\pi^{+-}/$ K^+-/ (anti-)p/ (anti-)Lambda

Search for Phase Transition: Directed Flow

- (Anti)-Lambdas dv₁/dy closely follow those of (anti)protons
- dv₁/dy for net-K and net-p are consistent with each other down to ~14.5 GeV, and deviate at lower energies

 $\pi^{+-}/K^{+-}/(anti-)p/(anti-)Lambda$

Search for the Critical Point: Higher Moments Fluctuations (Net-Protons)

* NEW *

 Higher moments of conserved quantum numbers (Q, S, B) are expected to be sensitive to the proximity to a critical point

Higher order moments \rightarrow higher sensitivity to criticality

- New: extended phase space volume of net-proton higher moments measurement $0.4 < p_T (GeV/c) < 0.8 \rightarrow 0.4 < p_T (GeV/c) < 2.0$
- Non-monotonic change of $\kappa \sigma^2$ for in central Au + Au collisions

Beam Energy Scan II (2019-2020)

Planned hardware upgrades:

- inner Time Projection Chamber: Larger acceptance : $|\eta| < 1 \rightarrow |\eta| < 1.5$ higher dE/dx resolution
- Event Plane Detector
- Endcap Time of Flight

Higher luminosity with electron cooling.

Scan of 205 < $\mu_{\scriptscriptstyle B}$ < 420 MeV with high events statistics

Physics focus:

- Search for critical point
- Search for onset of QGP
- Quantify the effect of Chiral Symmetry Restoration via total baryon density on vector meson in-medium modifications.

Summary

- Heavy Flavor Tracker (HFT) delivers its first results → Charm flows at RHIC top energy
- First result of quarkonia suppression from the Muon Telescope Detector (MTD)
- Beam Energy Scan I (BES-I) completed with $\sqrt{s_{NN}} = 14.5 \text{ GeV}$
 - → Net-protons $\kappa \sigma^2$, baryons $dv_1/dy|_{y=0}$, and charged hadron scaled- v_3^2 exhibit non-monotonicity at similar energies

STAR Future Plans

