Search for Chiral Vortical Effect at STAR

Liwen Wen(UCLA)
for the STAR Collaboration

Outline

- Physics Motivation
- STAR Experiment
- Preliminary Results on Search for CVE @ STAR
- Summary
- Outlook

QCD Vacuum Transition

Gluonic field
Chern-simons
potential energy

$$
N_{L}^{f}-N_{R}^{f}=2 Q_{W}, Q_{W} \neq 0 \rightarrow \mu_{A} \neq 0
$$

QCD vacuum transition:

- nonzero topological charge
- chirality imbalance (local parity violation)

Chiral Magnetic Effect

$j_{V}=\frac{1}{N_{c} e} 2 \pi^{2} \mu_{A} B \rightarrow \quad \begin{gathered}2 \\ \text { electric charge separation along } B \text { field }\end{gathered}$
Configuration with non-zero topological charge converts left(right)-handed fermions to right(left)-handed fermions, generating electromagnetic current along B direction and leading to electric charge separation .

Chiral Vortical Effect

Chiral Magnetic Effect vs Chiral Vortical Effect

B Chirality Imbalance $\left(\mu_{\mathrm{A}}\right)$-- Chirality Imbalance $\left(\mu_{\mathrm{A}}\right)$ Vorticity
Magnetic Field $\left(\omega \mu_{\mathrm{e}}\right) \quad--\quad$ Fluid Vorticity $\left(\omega \mu_{\mathrm{B}}\right)$

Electric Charge $\left(j_{e}\right)$
-- Baryon Number $\left(j_{B}\right)$

Electric charge separation

Baryon charge separation

$\Lambda-\mathrm{p}$ correlation measurement $\left(\gamma=<\cos \left(\varphi_{\Lambda}+\varphi_{p}-2 \Phi_{R P}\right)>\right)$ can be used to search for the Chiral Vortical Effect
D. Kharzeev, D. T. Son, PRL 106 (2011) 062301

Observable: Y correlator

$\frac{d N_{ \pm}}{d \phi} \propto 1+2 a_{ \pm} \cdot \sin \left(\phi^{ \pm}-\Psi_{R P}\right)$
A direct measurement of the P-odd quantity " a " should yield zero.

$$
\gamma=\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \psi_{R P}\right)\right\rangle
$$

Directed flow: expected to be the same for SS and OS

S. Voloshin, PRC 70 (2004) 057901

olenoidal Tracker(STAR) @ RHIC

STAR is a detector tracking thousands of particles produced by ion collisions with full azimuth coverage and large acceptance.

STAR Particle Identification

$z=\log \left(\frac{(d E / d x)_{\text {meas. }}}{(d E / d x)_{\text {theory }}}\right)$
H. Bichsel, NIM A. 562 (2006) 154
$m^{2}=p^{2}\left(\frac{c^{2} t^{2}}{L^{2}}-1\right)$
$\mathrm{c}=$ velocity of light,
L=path length

Define Event Plane

$$
\begin{gathered}
Q_{n} \cos \left(n \Psi_{n}\right)=Q_{x}=\sum_{i} w_{i} \cos \left(n \phi_{i}\right) \\
Q_{n} \sin \left(n \Psi_{n}\right)=Q_{y}=\sum_{i} w_{i} \sin \left(n \phi_{i}\right) \\
\Psi_{n}=\left(\tan ^{-1} \frac{Q_{y}}{Q_{x}}\right) / n
\end{gathered}
$$

The estimated reaction plane is called the event plane.

Lambda(Ks0) and Event Plane Reconstruction

Shifting method used to flatten the EP distribution.

Lambda-Proton Correlation(I)

- $\Lambda-p(\Lambda-\bar{p})$ and $\bar{\Lambda}-\bar{p}(\bar{\Lambda}-p)$ (same baryon number / oppo baryon number) show similar behaviors and their combination results are compared;
"same B" is systematically lower than "орро B" in the mid-central and peripheral collisions.

Lambda-Proton Correlation(2)

- oppo B - same B shows significant separation signal in peripheral bins, which is consistent with CVE prediction.

Lambda-Hadron Correlation

- Replace proton with charged hadron.
- As expected, difference between "same baryon number" and "oppo baryon number" is consistent with ZERO.

Ks0-Proton Correlation

- Replace Lambda with Ks0(no baryon charge). As CVE predicted, no significant separation signal observed.

Correlation Comparison

Put our results together, we can see separation effect is baryon number dependent.

Summary

\downarrow Results on the centrality dependence of the Λ-p correlation from 39 GeV and 200 GeV AuAu collisions are shown. We observed the baryon-number separation across the event plane, especially in peripheral collisions.

- Ks0-p and Λ-h(proton excluded) correlation functions show no separations.
- Those observations are consistent with expectation from CVE calculation.

Outlook: CME and CVE Manifestation in Correlation Hierarchy

