Physics with (un)polarized proton-nucleus collisions at STAR/RHIC

Oleg Eyser for the STAR Collaboration

Fall Meeting of the APS Division of Nuclear Physics October 13-16, 2016 – Vancouver, BC, Canada

Structure of Strongly Interacting Matter

The Nucleus...

- What is the fundamental quark-gluon structure of light and heavy nuclei?
- Can we experimentally find and explore a universal regime of strongly correlated QCD dynamics?
- What is the role of saturated strong gluon fields, and what are the degrees of freedom in this strongly interacting regime?
- Can the nuclear color filter provide insight into propagation, attenuation and hadronization of colored probes.

STAR @ RHIC

RHIC 2015

- $\vec{p} + p$, $L_{\text{int}} = 40 + 50 \text{ pb}^{-1}$
- $\vec{p} + Al, L_{\text{int}} = 1.0 \text{ pb}^{-1}$
- $\vec{p} + Au$, $L_{\text{int}} = 0.45 \text{ pb}^{-1}$

STAR 2015

 $-1 < \eta < 1$ TPC, TOF, BEMC $2.5 < \eta < 4.0$ FPS, FMS

Nuclear Modification: $R_{pA}(\gamma_{dir})$

- RHIC: p + A
- Moderate Q²
- Medium to low x
- $2.5 < \eta_p < 4.0$
- Direct photon

RHIC 2015

- p + Al, $L_{\text{int}} = 1.0 \text{ pb}^{-1}$
- p + Au, $L_{\text{int}} = 0.45 \text{ pb}^{-1}$

Reweighting procedure JHEP1412 (2014) 100

Nuclear Modification: $R_{pA}(\gamma_{DY}^*)$

- RHIC: p + A
- Moderate Q²
- Medium to low x
- $2.5 < \eta_p < 4.5$
- Drell-Yan production

- 2017: $p + p @ \sqrt{s} = 500 \text{ GeV}$
- 2023: $p + p/Al/Au @ \sqrt{s_{NN}} = 200 \text{ GeV}$

Forward jet

Back-to-back Correlations

In p + p:

- pQCD 2 → 2 process
- Back-to-back dijet

- Monojet: p_T is balanced by many gluons
- Color Glass Condensate predicts suppression of back-to-back correlation
- Forward kinematics: $x_g \approx 10^{-3} \sim 10^{-4} \ (p+A \rightarrow \pi^0 + \pi^0 \ \text{in FMS})$

Nuclear Fragmentation Functions

- Identified hadron in jet: e^+e^- , SIDIS, p+p
- Unique: gluon fragmentation in p + p/A
- Test universality: e + A and p + A
- Spin dependent fragmentation (Collins effect)

Nuclear Effects in $A_N(\pi^0)$

- Polarized: Transverse spin asymmetries
- RHIC Run 2015
 - $\vec{p} + p/\vec{p} + Al/\vec{p} + Au$

- Nuclear effects on fragmentation process
- Possibly gluon saturation effects (CGC)

No suppression can be observed so far.

Forward Calorimeter Upgrade in STAR

Forward rapidities

• $2.3 < \eta < 4.0$

Preshower detector

EM calorimeter

PHENIX PbSc

Hadronic calorimeter

• $L = 4 \cdot \lambda_I$

Four additional layers of Si strip trackers (within magnet / central barrel)

RHIC Cold QCD Schedule

Year	√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade
2017	p [†] p @ 510	400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism	A_N for γ , W^{\pm} , Z^0 , DY	A _N ^{DY} : Postshower to FMS@STAR
			Transversity, Collins FF, linearly pol. Gluons, Gluon Sivers in Twist-3	$A_{UT}^{\sin(\phi_s-2\phi_h)}$ $A_{UT}^{\sin(\phi_s-\phi_h)}$ modulations of h^{\pm} in jets, $A_{UT}^{\sin(\phi_s)}$ for jets	None
			First look at GPD Eg	A_{UT} for J/ Ψ in UPC	None
2023	p [†] p @ 200	300 pb ⁻¹ 8 weeks	subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Yes Forward instrum.
			evolution of ETQS fct. properties and nature of the diffractive exchange in p+p collisions.	A_N for γ A_N for diffractive events	None None
2023	p [†] Au @ 200	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions	R_{pAu} direct photons and DY	$R_{pAu}(DY)$:Yes Forward instrum.
			Nuclear dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_S - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	None
			Clear signatures for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Yes Forward instrum.
2023	p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF,	R _{pAl} : direct photons and DY	R _{p,Al} (DY): Yes Forward instrum.
			A-dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_S - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	None
			A-dependence for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Yes Forward instrum.

(* Beam energy scan II and full energy Au + Au running not shown)

Summary

As recommended in the

- Utilize existing RHIC infrastructure
- Complete measurements that are unique in p + p and p + A
- Pursue measurements that will optimize the program at a future electron-ion collider

Additional investments in detector upgrades are necessary to complete these goals.

arxiv:1602.03922

Complementarity p + A / e + A

- Directly probing gluons
- Large cross-sections
- Initial state effects
- Cold nuclear matter energy loss
- Ridge
- Flow coefficients v_n
- Particle correlations
- Transverse momentum dependence

- High precision
- Partonic kinematics (Q^2, x, v)
- Photoproduction
- Tagging of high N_{ch} events
- Ridge
- Flow coefficients v_n
- Particle correlations
- Transverse momentum dependence
- Spatial distributions

RHIC Performance

Consistent improvement in delivered luminosity and beam polarizations

Kinematic Coverage

Collins Fragmentation: $\sin \phi_S - \phi_H$

