Rapidity Correlations
 W.J. Llope for the STAR Collaboration

Wayne State University

STAR net-p multiplicity cumulant ratios

A wider P_{T} acceptance made the deviations from Poisson much larger!

In a small acceptance, you will see Poissonian cumulant ratios, CP or not....
V. Koch, RIKEN BNL Research Center Workshop on Fluctuations, Correlations and RHIC Low Energy Runs, October 3-5, 2011 http://quark.phy.bnl.gov/~htding/fcrworkshop/Koch.pdf
decreasing rapidity acceptance in the analysis also drives the $\mathrm{C}_{4} / \mathrm{C}_{2}$ values to Poisson:
see also D. Mahapatra et al., arXiv nucl-ex/0108011v2

Net-baryon Acceptance:

In a small acceptance, you will see Poissonian cumulant ratios, CP or not....
V. Koch, RIKEN BNL Research Center Workshop on Fluctuations, Correlations and RHIC Low Energy Runs, October 3-5, 2011 http://quark.phy.bnl.gov/~htding/fcrworkshop/Koch.pdf
decreasing rapidity acceptance in the analysis also drives the $\mathrm{C}_{4} / \mathrm{C}_{2}$ values to Poisson:
see also D. Mahapatra et al., arXiv nucl-ex/0108011v2

Net-baryon Acceptance:

0\%		100\%
4		\rightarrow
Poisson fluctuations	Maximum signal?	Zero fluctuations (baryon \# conservation)
No signal!	B. Ling \& M. Stephanov, arXiv 1512.09125	No signal!

In a small acceptance, you will see Poissonian cumulant ratios, CP or not....
V. Koch, RIKEN BNL Research Center Workshop on Fluctuations, Correlations and RHIC Low Energy Runs, October 3-5, 2011 http://quark.phy.bnl.gov/~htding/fcrworkshop/Koch.pdf
decreasing rapidity acceptance in the analysis also drives the $\mathrm{C}_{4} / \mathrm{C}_{2}$ values to Poisson:
see also D. Mahapatra et al., arXiv nucl-ex/0108011v2

Net-baryon Acceptance:

$\mathrm{R}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ - developed at ISR \& FNAL in 1970s to describe two particle correlations in (psuedo)rapidity $\mathrm{R}_{2}>0$ correlations, $\mathrm{R}_{2}<0$ anticorrelations, $\mathrm{R}_{2}=0$ uncorrelated.

$$
R_{2}=\frac{C_{2}\left(y_{1}, y_{2}\right)}{\rho_{1}\left(y_{1}\right) \rho_{1}\left(y_{2}\right)}=\frac{\rho_{2}\left(y_{1}, y_{2}\right)}{\rho_{1}\left(y_{1}\right) \rho_{1}\left(y_{2}\right)}-1 \quad \text { same event } \quad \text { mixed events or tensor product of 1D }
$$

lead to "cluster" picture...

- clusters decay to FS particles
- clusters uncorrelated w/ each other
- isotropic decay of clusters in their rest frames
- Lorentz-invariant translation of clusters in pseudorapidity

Exposes short and long-range correlations: E \& p conservation minijets HBT, Bose-Einstein, etc.
L. Foà, Phys. Lett. C22, 1 (1975)
H. Bøggild, Ann. Rev. Nucl. Sci. 24, 451 (1974)
M. Jacob, Phys. Rep. 315, 7 (1999)

Figure 3.5: $R_{2}^{c c}$ for $p+p$ collisions at FNAL (a-b)and CERN ISR (c-d): $\sqrt{s}=13.7$, $27,23,63 \mathrm{GeV}$.

Recall how fourier decomposition of azimuthal angle distrubutions leads to all sorts of interesting information on elliptic flow, flow fluctuations, triangularity....

A similar approach can be applied to study the shape of the fireball in the longitudinal direction!
Long-range rapidity correlations as fluctuating rapidity density of the fireball:
A. Bialas, A. Bzdak, and K. Zalewski, Phys. Lett. B 710, 332 (2012).
A. Bialas and K. Zalewski, Acta Phys. Pol. B 43, 1357 (2012).
...possibly with a significant asymmetric component in fireball's rapidity shape:
B. I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 103, 172301 (2009).
...Generalize!
A. Bzdak and D. Teaney, Phys. Rev. C 87, 024906 (2013)

$$
C\left(y_{1}, y_{2}\right) \equiv \rho_{2}\left(y_{1}, y_{2}\right)-\rho\left(y_{1}\right) \rho\left(y_{2}\right)
$$

...decompose rapidity cumulant into Chebyshev polynomials...

$$
\frac{C_{2}\left(y_{1}, y_{2}\right)}{\left\langle\rho\left(y_{1}\right)\right\rangle\left\langle\rho\left(y_{2}\right)\right\rangle}=\sum_{i, k}\left\langle a_{i} a_{k}\right\rangle T_{i}\left(y_{1} / Y\right) T_{k}\left(y_{2} / Y\right)
$$

information on the number of sources, baryon stopping mechanisms, viscosity, ...

See also:
A. Bzdak, Phys. Rev. C 85, 051901(R) (2012)
T. Lappi \& L. McLerran, Nucl. Phys. A 832, 330 (2010)
A. Monnai, B. Schenke, arXiv:1509.04103
A. Bzdak (QM2015) 29/9/2015 16:00-16:20
B. Schenke (QM2015) 30/9/2015 9:20-09:40

Recall how fourier decomposition of azimuthal angle distrubutions leads to all sorts of interesting information on elliptic flow, flow fluctuations, triangularity....

A similar approach can be applied to study the shape of the fireball in the longitudinal direction!
Long-range rapidity correlations as fluctuating rapidity density of the fireball:
A. Bialas, A. Bzdak, and K. Zalewski, Phys. Lett. B 710, 332 (2012).
A. Bialas and K. Zalewski, Acta Phys. Pol. B 43, 1357 (2012).
...possibly with a significant asymmetric component in fireball's rapidity shape:
B. I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 103, 172301 (2009).
...Generalize!
A. Bzdak and D. Teaney, Phys. Rev. C 87, 024906 (2013)

$$
C\left(y_{1}, y_{2}\right) \equiv \rho_{2}\left(y_{1}, y_{2}\right)-\rho\left(y_{1}\right) \rho\left(y_{2}\right)
$$

$T_{2}\left(y_{1}\right) T_{2}\left(y_{2}\right)$
information on the number of sources, baryon stopping mechanisms, viscosity, ...

See also:
A. Bzdak, Phys. Rev. C 85, 051901(R) (2012)
T. Lappi \& L. McLerran, Nucl. Phys. A 832, 330 (2010)
A. Monnai, B. Schenke, arXiv:1509.04103
A. Bzdak (QM2015) 29/9/2015 16:00-16:20
B. Schenke (QM2015) 30/9/2015 9:20-09:40
$\mathrm{R}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ - developed at ISR \& FNAL in 1970s to describe two particle correlations in (psuedo)rapidity $\mathrm{R}_{2}>0$ correlations, $\mathrm{R}_{2}<0$ anticorrelations, $\mathrm{R}_{2}=0$ uncorrelated.

Recently, this variable has reappeared with a new name: $C\left(y_{1}, y_{2}\right) \ldots \quad C\left(y_{1}, y_{2}\right)=R_{2}\left(y_{1}, y_{2}\right)+1$

$$
R_{2}=\frac{C_{2}\left(y_{1}, y_{2}\right)}{\rho_{1}\left(y_{1}\right) \rho_{1}\left(y_{2}\right)}=\frac{\rho_{2}\left(y_{1}, y_{2}\right)}{\rho_{1}\left(y_{1}\right) \rho_{1}\left(y_{2}\right)}-1
$$

$\mathrm{R}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ - developed at ISR \& FNAL in 1970s to describe two particle correlations in (psuedo)rapidity $\mathrm{R}_{2}>0$ correlations, $\mathrm{R}_{2}<0$ anticorrelations, $\mathrm{R}_{2}=0$ uncorrelated.

Recently, this variable has reappeared with a new name: $C\left(y_{1}, y_{2}\right) \ldots \quad C\left(y_{1}, y_{2}\right)=R_{2}\left(y_{1}, y_{2}\right)+1$

$$
C\left(y_{1}, y_{2}\right)=1+\frac{1}{2}<a_{0} a_{0}>+\frac{1}{\sqrt{2}} \sum_{n=1}^{\infty}<a_{0} a_{n}>\left(T_{n}\left(y_{1}\right)+T_{n}\left(y_{2}\right)\right)+\sum_{n, m=1}^{\infty}<a_{n} a_{m}>\frac{T_{n}\left(y_{1}\right) T_{m}\left(y_{2}\right)+T_{n}\left(y_{2}\right) T_{m}\left(y_{1}\right)}{2}
$$

J. Jia, S. Radhakrishnan, and M. Zhou, Phys. Rev. C93, 044905 (2016), arXiv:1506.03496
$\mathrm{R}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ - developed at ISR \& FNAL in 1970s to describe two particle correlations in (psuedo)rapidity $\mathrm{R}_{2}>0$ correlations, $\mathrm{R}_{2}<0$ anticorrelations, $\mathrm{R}_{2}=0$ uncorrelated.

Recently, this variable has reappeared with a new name: $C\left(y_{1}, y_{2}\right) \ldots \quad C\left(y_{1}, y_{2}\right)=R_{2}\left(y_{1}, y_{2}\right)+1$

$$
C\left(y_{1}, y_{2}\right)=1+\frac{1}{2}<a_{0} a_{0}>+\frac{1}{\sqrt{2}} \sum_{n=1}^{\infty}<a_{0} a_{n}>\left(T_{n}\left(y_{1}\right)+T_{n}\left(y_{2}\right)\right)+\sum_{n, m=1}^{\infty}<a_{n} a_{m}>\frac{T_{n}\left(y_{1}\right) T_{m}\left(y_{2}\right)+T_{n}\left(y_{2}\right) T_{m}\left(y_{1}\right)}{2}
$$

$\mathrm{R}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ - developed at ISR \& FNAL in 1970s to describe two particle correlations in (psuedo)rapidity $\mathrm{R}_{2}>0$ correlations, $\mathrm{R}_{2}<0$ anticorrelations, $\mathrm{R}_{2}=0$ uncorrelated.

Recently, this variable has reappeared with a new name: $C\left(y_{1}, y_{2}\right) \ldots \quad C\left(y_{1}, y_{2}\right)=R_{2}\left(y_{1}, y_{2}\right)+1$

$$
C\left(y_{1}, y_{2}\right)=1+\frac{1}{2}<a_{0} a_{0}>+\frac{1}{\sqrt{2}} \sum_{n=1}^{\infty}<a_{0} a_{n}>\left(T_{n}\left(y_{1}\right)+T_{n}\left(y_{2}\right)\right)+\sum_{n, m=1}^{\infty}<a_{n} a_{m}>\frac{T_{n}\left(y_{1}\right) T_{m}\left(y_{2}\right)+T_{n}\left(y_{2}\right) T_{m}\left(y_{1}\right)}{2}
$$

With a special normalization, the residual centrality dependence is largely eliminated.

$$
\begin{aligned}
& C_{N}\left(y_{1}, y_{2}\right)=\frac{C\left(y_{1}, y_{2}\right)}{C_{p}\left(y_{1}\right) C_{p}\left(y_{2}\right)} \\
& C_{p}\left(y_{1}\right)=\frac{\int_{-Y}^{Y} C\left(y_{1}, y_{2}\right) d y_{2}}{2 Y}, C_{p}\left(y_{2}\right)=\frac{\int_{-Y}^{Y} C\left(y_{1}, y_{2}\right) d y_{1}}{2 Y}
\end{aligned}
$$

$\mathrm{R}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ - developed at ISR \& FNAL in 1970s to describe two particle correlations in (psuedo)rapidity $\mathrm{R}_{2}>0$ correlations, $\mathrm{R}_{2}<0$ anticorrelations, $\mathrm{R}_{2}=0$ uncorrelated.

Recently, this variable has reappeared with a new name: $C\left(y_{1}, y_{2}\right) \ldots \quad C\left(y_{1}, y_{2}\right)=R_{2}\left(y_{1}, y_{2}\right)+1$

With a special normalization, the residual centrality dependence is largely eliminated.
$C_{N}\left(y_{1}, y_{2}\right)=\frac{C\left(y_{1}, y_{2}\right)}{C_{p}\left(y_{1}\right) C_{p}\left(y_{2}\right)}$
$C_{p}\left(y_{1}\right)=\frac{\int_{-Y}^{Y} C\left(y_{1}, y_{2}\right) d y_{2}}{2 Y}, C_{p}\left(y_{2}\right)=\frac{\int_{-Y}^{Y} C\left(y_{1}, y_{2}\right) d y_{1}}{2 Y}$
$C_{N}\left(y_{1}, y_{2}\right)=1+\sum_{n, m=1}^{\infty}<a_{n} a_{m}>\frac{T_{n}\left(y_{1}\right) T_{m}\left(y_{2}\right)+T_{n}\left(y_{2}\right) T_{m}\left(y_{1}\right)}{2}$

Dynamical shape fluctuations (and correlations) can be quantified by decomposing the measured distributions onto a basis set of Legendre polynomials, with "strength" coefficients $<\mathrm{a}_{\mathrm{m}} \mathrm{a}_{\mathrm{n}}$ >

Rapidity analog of decomposition of azimuthal anistropies onto $\cos (n \varphi \ldots)$ bases with strengths $v_{\mathbf{n}}$

Datasets: All 8 BES energies
POI:
$\mathrm{h} \pm, \mathrm{K} \pm, \& \mathrm{p} \pm$
2σ on $\mathrm{dE} / \mathrm{dx}$, then require good TOF m^{2}
General cuts: \mid Zvtx $\mid<30 \mathrm{~cm}$ at all ${\sqrt{s_{N N}}}$
Nhitsfit>15
$\mathrm{gDCA}<2 \mathrm{~cm}$
$\mathrm{p}_{\mathrm{T}}{ }^{\text {min }}: \quad 0.2$ for $\mathrm{h} \pm \& \mathrm{~K} \pm, 0.4$ for $\mathrm{p} \pm$
$\mathrm{p}_{\mathrm{T}}{ }^{\text {max }}: \quad 2.0$
$\mathrm{p}^{\text {max }}: \quad 1.6$ for $\mathrm{h} \pm \& \mathrm{~K} \pm, 3.0$ for $\mathrm{p} \pm$
Centrality: $\quad N_{\text {tracks }}$ with $0.5<\eta<1$ for $\mathrm{h} \pm \& \mathrm{~K} \pm$
$\mathrm{N}_{\pi, \mathrm{K}}$ with $0.5<\eta<1$ for $\mathrm{p} \pm$
Cuts \& centrality intentionally very close to those used in recent multiplicity cumulant analyses.

Same analysis code used for UrQMD events
$\sim 20 \mathrm{M}$ min. bias events available at each ${\sqrt{\mathrm{s}_{\mathbf{N N}}} \ldots} \ldots$
Parameterized exp. efficiency vs (PID,pt,y,cent)...
Centrality via cuts on b when integrated $w / R M>1$

BPreliminary

Careful good run \& good event QA performed...

Pseudocorrelations

$$
<\mathrm{R}_{\mathbf{2}}>\operatorname{vs} \Delta \mathrm{y}
$$

low Δy enhancement... not seen in UrQMD evts...

Color: $\begin{gathered}\text { data }\end{gathered}$

Caused by rapidity dependence of experimental efficiency coupled with Zvtx smearing...
See L. Tarini, Ph.D. Thesis, and his talk at the STAR Analysis Meeting, MIT, 7/10/2009

Now I analyze in 2cm-wide Zvtx bins then weight-average the results...

Very strong trench in $\mathrm{R}_{\mathbf{2}}$ when particle multiplicities/event of POI get large:
$h \pm$ for all centralities and $V_{s_{N N}}$, and only most central for $\mathrm{K} \pm$
Numerator and denominator of $\mathrm{R}_{\mathbf{2}} \& \mathrm{C}_{\mathrm{N}}$ uses only measured tracks... but there is a slight 2-particle efficiency loss when two tracks are nearby $(\Delta y \sim 0)$

The STAR track-finder "sti" does not share spacepoints!
a new one does "stiCA" (10\%)

like-sign

$p_{t, 1}<p_{t, 2}$
$\Delta \varphi_{12}>0$

Merging/crossing Hit losses, Pair Loss
$p_{t, 1}<p_{t, 2}$
$\Delta \varphi_{12}<0$

No merging/crossing
No losses

$$
\Delta \varphi_{12}<0
$$

Image from P. Pujahari
LS \& US: reflect clean area in $\Delta \varphi$ to replace problem area
US: nothing special in fill method
LS: pT order the tracks, fill numerator for upper triangle only, then symmetrize

Rapidity Correlations $\mathrm{h}+\mathrm{LS}, \mathrm{R}_{\mathbf{2}}\left(\Delta \mathrm{p}_{\mathbf{T}}, \Delta \varphi\right)$ for $|\Delta \mathrm{y}|<0.04, \mathrm{AuAu} 200 \mathrm{GeV}, \mathrm{MB}$ and by centrality

unsymmetrized $\mathrm{R}_{\mathbf{2}}(\Delta \mathrm{y}, \Delta \varphi)$

Thus cannot simply start from $\rho_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ and $\rho_{1}\left(\mathrm{y}_{1}\right)^{*} \rho_{1}\left(\mathrm{y}_{2}\right) \ldots$
\ldots..I must calculate each as 3 D hists as $\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \Delta \varphi\right)$
Several symmetrization approaches tried to "fill" merging hole... All tricky
For now, just cut out the merging hole in both same and mixed event histograms

The cut used is $|\Delta \mathrm{y}|<0.04$ and $-5 \pi / 12 \leq \Delta \varphi<0$
Given this cut, I cannot bin the (y1,y2) parts of the TH3D too finely! (or there will never be any counts in the $\Delta y=0$ bins)
Rapidity bin width must be near or larger than $2 * 0.04 \ldots$
But this can cause non-physical artifacts in the $<\mathrm{a}_{\mathrm{mn}}>$ values!

The cut used is $|\Delta \mathrm{y}|<0.04$ and $-5 \pi / 12 \leq \Delta \varphi<0$
Given this cut, I cannot bin the $(\mathrm{y} 1, \mathrm{y} 2)$ parts of the TH3D too finely! (or there will never be any counts in the $\Delta y=0$ bins)
Rapidity bin width must be near or larger than $2^{*} 0.04 \ldots$
But this can cause non-physical artifacts in the $<\mathrm{a}_{\mathrm{mn}}>$ values!

With these 3D distributions, I can then make the CF plots $v s .(\Delta y, \Delta \varphi)$

Małgorzata Janik, X Workshop on Particle Correlations and Femtoscopy, Gyöngyös, Hungary, Aug 26, 2014

Małgorzata Janik, X Workshop on Particle Correlations and Femtoscopy, Gyöngyös, Hungary, Aug 26, 2014

Minijet peak at $(\Delta y, \Delta \varphi) \sim(0,0)$ seen for all PID'd pairs except LS protons...
$\Delta \varphi$ dependence is $-\cos (\Delta \varphi)$ so consistent with momentum conservation...
But comparison with models with strict mom'n conservation do not have this hole (?!?)

Minijet peak at $(\Delta y, \Delta \varphi) \sim(0,0)$ seen for all PID'd pairs except LS protons...
$\Delta \varphi$ dependence is $-\cos (\Delta \varphi)$ so consistent with momentum conservation...
But comparison with models with strict mom'n conservation do not have this hole (?!?)

In RHIC BES data, another possibility is lack of available energy to create nearby $2^{\text {nd }}$ baryon...

This idea used to describe $\mathrm{e}^{+} \mathrm{e}^{-}$data at $20-30 \mathrm{GeV}$

STAR 出
W.J. Llope, INT Program INT-16-3, Seattle WA, Oct. 6, 2016

Turning now to the data...

Caveats...
Hard cut to remove effects from track merging (reflection might be better)
Denominator from mixing (convolution might be better)
Not yet scaling $\mathrm{R}_{\mathbf{2}}$ by $\mathrm{N}_{\text {part }}$
Systematic uncertainities not yet determined.

Don't expect beautifully smooth plots like produced at the LHC. Event sample sizes are similar, but the LHC has many more pairs/event.

Rapidity Correlations
R_{2} vs. $\left(y_{1}, y_{2}\right)$ for protons by $\sqrt{s}_{\mathrm{NN}}, 0-5 \%$, STAR BES data

UrQMD p+, R 2 vs. $\left(y+\frac{y}{2}\right) \in-5 \%$

STAR
W.J. Llope, INT Program INT-16-3, Seattle WA, Oct. 6, 2016

Rapidity Correlations
R_{2} vs. $(\Delta y, \Delta \varphi)$ for protons by $\sqrt{s}_{s_{\mathrm{NN}}}, 0-5 \%$, STAR BES data

STAR
W.J. Llope, INT Program INT-16-3, Seattle WA, Oct. 6, 2016

Rapidity Correlations

STAR
W.J. Llope, INT Program INT-16-3, Seattle WA, Oct. 6, 2016

LS p and pbar R_{2} the same at 200 GeV
Very little dependence of $\mathrm{R}_{\mathbf{2}}$ on \sqrt{s}_{NN} for LS p
STAR

Rapidity Correlations

STAR
W.J. Llope, INT Program INT-16-3, Seattle WA, Oct. 6, 2016

STAR
W.J. Llope, INT Program INT-16-3, Seattle WA, Oct. 6, 2016

Rapidity Correlations
$\mathrm{R}_{2} \& \mathrm{a}_{\mathrm{mn}} v s .\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \& \Delta \mathrm{y}$ for protons by $V_{\mathrm{s}_{\mathrm{NN}}}, 0-5 \%$, data \& UrQMD

STAR मे
W.J. Llope, INT Program INT-16-3, Seattle WA, Oct. 6, 2016

STAR $\dot{4}$
W.J. Llope, INT Program INT-16-3, Seattle WA, Oct. 6, 2016

STAR मे
W.J. Llope, INT Program INT-16-3, Seattle WA, Oct. 6, 2016

STAR में
W.J. Llope, INT Program INT-16-3, Seattle WA, Oct. 6, 2016

Rapidity correlation variables R_{2} and C_{N} studied for LS and $\mathrm{US} \mathrm{h}, \mathrm{K}$, and p as a function of the centrality and ${\sqrt{s_{\mathrm{NN}}}}$
C_{N} can be decomposed using basis set of Legendre polynomials to quantify the importance of different shaped (anti)correlations.

This approach is the analog in the rapidity direction of quantifying azimuthal anistropies with $\mathrm{v}_{\mathbf{n}}$ observables.

Both STAR BES data and large samples of UrQMD events analyzed.
Careful run and event QA, experiment efficiencies applied to UrQMD events

Signal everywhere.
UrQMD generally does not reproduce the observations.

Would very much appreciate any thoughts!

$T_{4}\left(y_{1}\right) T_{4}\left(y_{2}\right)$

$\left[T_{1}\left(y_{1}\right) T_{3}\left(y_{2}\right)+T_{3}\left(y_{1}\right) T_{1}\left(y_{2}\right)\right] / 2$

$T_{3}\left(y_{1}\right) T_{3}\left(y_{2}\right)$

$\left[T_{2}\left(y_{1}\right) T_{4}\left(y_{2}\right)+T_{4}\left(y_{1}\right) T_{2}\left(y_{2}\right)\right] / 2$

Let's look at the correlations in a different way.

$$
\begin{gathered}
C_{2}=\rho_{2}\left(y_{1}, y_{2}\right)-\rho_{1}\left(y_{1}\right) \rho_{1}\left(y_{2}\right) \\
R_{2}=\frac{C_{2}\left(y_{1}, y_{2}\right)}{\rho_{1}\left(y_{1}\right) \rho_{1}\left(y_{2}\right)}=\frac{\rho_{2}\left(y_{1}, y_{2}\right)}{\rho_{1}\left(y_{1}\right) \rho_{1}\left(y_{2}\right)}-1
\end{gathered}
$$

Three Types of Correlations

C_{2} is a covariance R_{2} is the covariance per pair

Correlated:
$\mathrm{C}_{2}, \mathrm{R}_{2}>0$
$\mathrm{C}_{2}, \mathrm{R}_{2} \sim 0$
$\mathrm{C}_{2}, \mathrm{R}_{2}<0$

Uncorrelated:
$\mathrm{C}_{2}, \mathrm{R}_{2} \sim 0$
AntiCorrelated
$\mathrm{C}_{2}, \mathrm{R}_{2}<0$
Magnitude normalization:

$$
R_{2}^{b s}=\frac{\langle n(n-1)\rangle}{\left\langle n>^{2}\right.}-1
$$

Structure of correlation functions

Department of Physics, University of Arizona, Tucson, Arizona 85721
$C_{2}\left(x_{1}, x_{2}\right)=\rho_{2}\left(x_{1}, x_{2}\right)-\rho_{1}\left(x_{1}\right) \rho_{1}\left(x_{2}\right)$,
$C_{3}\left(x_{1}, x_{2}, x_{3}\right)=\rho_{3}\left(x_{1}, x_{2}, x_{3}\right)-\sum_{(3)} \rho_{2}\left(x_{1}, x_{2}\right) \rho_{1}\left(x_{3}\right)+2 \rho_{1}\left(x_{1}\right) \rho_{1}\left(x_{2}\right) \rho_{1}\left(x_{3}\right)$,
$C_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\rho_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)-\sum_{(4)} \rho_{3}\left(x_{1}, x_{2}, x_{3}\right) \rho_{1}\left(x_{4}\right)-\sum_{(3)} \rho_{2}\left(x_{1}, x_{2}\right) \rho_{2}\left(x_{3}, x_{4}\right)$

$$
+2 \sum_{(6)} \rho_{2}\left(x_{1}, x_{2}\right) \rho_{1}\left(x_{3}\right) \rho_{1}\left(x_{4}\right)-6 \rho_{1}\left(x_{1}\right) \rho_{1}\left(x_{2}\right) \rho_{1}\left(x_{3}\right) \rho_{1}\left(x_{4}\right) .
$$

See also:
L. Foà, Phys. Lett. C22, 1 (1975)
H. Bøggild, Ann. Rev. Nucl. Sci. 24, 451 (1974)
M. Jacob, Phys. Rep. 315, 7 (1999)

Lower-order correlations explicitly removed. R_{k} is just these rapidity cumulants C_{k} scaled by the number of pairs, triplets, quadruplets, ... R_{k} thus manifestly independent of experimental inefficiencies by definition...

$$
\mathrm{R}_{2} \text { baseline: } R_{3}=\frac{\langle n(n-1)\rangle}{\langle n\rangle^{2}}-1 \quad \mathrm{R}_{3} \text { baseline: } R_{3}=\frac{\langle n(n-1)(n-2)\rangle}{\langle n\rangle^{3}}-3 \frac{\langle n(n-1)\rangle}{\langle n\rangle^{3}}\langle n\rangle+2
$$

Robust indicator of N -fold (anti)correlations, explicitly as a function of $\Delta \mathrm{y}$ and $<\mathrm{y}>\ldots$ By construction, independent of single-particle inefficiencies..

STAR

