Transverse Single-Spin Asymmetries of Direct Photons from Proton-Proton Collisions at Forward Rapidity

Oleg Eyser for the STAR Collaboration Fall Meeting of the Division of Nuclear Physics of the American Physical Society Pittsburgh, October 2017

Nucleon Structure

New era in QCD studies

Gamberg, Kang, Prokudin

- Transverse spin asymmetries for nucleon tomography
- Transverse momentum dependent distribution functions

Compare SIDIS and Drell-Yan production

• Non-universality of spin-orbit correlations (Sivers function et al.)

Factorization and Scale

Initial / final state effects

- TMD factorization: two characteristic scales Q^2 and Q_T^2
- Collinear factorization: twist-3 with one hard scale
- Both are closely related

 $Q^2 \gg Q_T^2 \gtrsim \Lambda_{QCD}^2 \qquad Q^2, Q_T^2 \gg \Lambda_{QCD}^2$

$$-\int d^2 k_{\perp} \frac{|k_{\perp}^2|}{M} f_{1T}^{\perp q}(x,k_{\perp}^2) = T_{q,F}(x,x)$$

 $f_{1T}^{\perp q}$: Sivers TMD function $T_{q,F}$: Efremov-Teryaev-Qiu-Sterman correlator Direct photons, PRL 110, 232301

Polarized Proton Collider: RHIC

The STAR Experiment

Large acceptance $-1 < \eta < 2$, full azimuth TPC+TOF EMCal other dedicated subsystems Forward EMCal $2.5 < \eta < 4$ preshower detector in 2015 postshower detector in 2017

 \rightarrow D. Kapukchyan (session KF, 2pm today)

Direct Photons

Real photon from QCD hard scattering

- Compton process
- Annihilation
- No fragmentation
- p + p collisions, $\sqrt{s} = 200$ GeV
- Small cross section 11 μb
- Simulation: event generator PYTHIA 6.4.28

Trigger $p_T > 2.0 \text{ GeV/c}$ Photon candidate with highest energy Background $\times 10$ larger than signal

• With preshower selection for photon candidate

QCD 2 \rightarrow 2 Background

 $\sqrt{s} = 200 \text{ GeV}$ $L_{int} = 40 \text{ pb}^{-1}$

Direct Photon Identification

Multi-variate analysis

- Selection of uncorrelated variables
- Best results for boosted decision trees
- Signal efficiency $\approx 80\%$

 $\sqrt{s} = 200 \text{ GeV}$

- Remaining background
 - Asymmetric η decays
 - Low energy, E < 25 GeV
 - Near edge of acceptance

Direct Photon Identification

Multi-variate analysis

- Selection of uncorrelated variables
- Best results for boosted decision trees
- Signal efficiency $\approx 90\%$

 $\sqrt{s} = 500 \text{ GeV}$

- Remaining background
 - Better rejection
 - More luminosity, $\mathcal{L}_{rec} = 240 \text{ pb}^{-1}$ (2017)
 - Merged π^0 showers at high energies, E > 80 GeV

9

0.8 0.9

Next Steps

Comparison data / simulation

- Full detector simulation
- Possible beam related background
- Robust calibration
 - UV LED system for curing of radiation damage installed in 2017

Outlook

Direct photons are important to our understanding of QCD

- Universality
- Evolution
- Relation between higher twist collinear and TMD pictures
- In combination with measurements of Drell-Yan and W-Boson production

QCD $2 \rightarrow 2$ Background

 $\sqrt{s} = 500 \text{ GeV}$

90 100

120

Esum

Ideally...

Drell-Yan Production $p^{\uparrow} + p \rightarrow \gamma^* \rightarrow l^+ + l^ \sqrt{s} = 500 \text{ GeV}$ $Q^2 = M^2 \gg p_T^2$ Get rid of background Scan *x* with rapidity Accumulate a few fb^{-1}

