The STAR Forward Rapidity Upgrade

Oleg Eyser for the STAR Collaboration

5th Joint Meeting of the APS Division of Nuclear Physics and the Physical Society of Japan

Waikoloa, Hawaii

U.S. DEPARTMENT OF Office of Science

October 23-27, 2018

Context

1 Emerging Nucleons

How are gluons, sea quarks, and their intrinsic spins distributed in space and momentum in the nucleon?

2 <u>Nuclear Medium</u>

How do colored quarks and gluons and colorless jets interact with the nuclear medium?

How does the nuclear environment affect quark and gluon distributions?

Are abundant low-momentum gluons confined within nucleons?

3 <u>Gluon Saturation</u>

What happens to the gluon density at high energy?

Are the properties of a saturated gluonic state universal among all nuclei?

Transverse Spin Effects

Origin of large transverse asymmetries at high x_F

$$A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

- Disentangle initial and final state effects
 - Transversity distribution
 - Spin-orbit correlations, fragmentation functions
 - Transverse momentum dependent vs. higher twist

Tagged jets

Charged pions

Pions in jets

Nuclear Distribution Functions

- Poorly constrained, esp. towards low x
- LHC data at very high Q²

 $R_{pA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN^{pA}}{dN^{pp}}$

- Direct photons \rightarrow gluon PDF
- Drell-Yan production → sea quarks
 2.5 < η < 4.5

Projections:

Gluon Saturation

Saturation scale

 $Q_A^2(\mathbf{x}) \approx A^{1/3} Q_S^2(\mathbf{x})$

- Scan kinematic range: $x \& Q^2$
 - Trigger p_T
 - Associated p_T
- Test A-dependence
 - p + Al, p + Au
- Other probes (forward)
 - γ-hadron correlation
 - γ –jet correlation

RHIC after Beam Energy Scan II

The STAR Forward Calorimeter System and Forward Tracking System

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648

Highlights of the STAR midrapidity Physics Program after 2020

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669

New detector upgrades for potential polarized p + p collisions at $\sqrt{s} = 510$ GeV

Forward Calorimeter System

Preshower detector

EM calorimeter

- PHENIX PbSc
- New readout SiPM/APD
- Not compensating

Hadronic calorimeter

- $L = 4 \cdot \lambda_I$
- Sampling iron-scintillator
- Same readout

Calorimeter R&D as part of EIC studies, beam test, and in situ setup at STAR Balance of cost and performance Cost \approx \$ 2.0 M

FCS – Research & Development

- Efforts for ECAL and HCAL as part of EIC R&D
- ECAL test in 2017
 - Hamamatsu SiPM $6 \times 6 \text{ mm}^2$
 - FEE boards and digitizers
 - Integrated into STAR (DAQ, trigger)
- FCS test in 2018
 - Large scale ECAL prototype with HCAL towers

Forward Tracking System

	p+p / p+A	A+A
Tracking	charge separation photon suppression	$rac{\delta p}{p} pprox 20 - 30\%$ at $0.2 < p_T < 2.0~{ m GeV}/c$

- 3 layers of silicon mini-strip disk
 - z = 90, 140, 187 cm
 - Builds on experience of STAR IST (Intermediate Silicon Tracker)
- 4 layers of small-strip Thin Gap Chambers
 - *z* = 270, 300, 330, 360 cm
 - Use of STAR TPC electronics for readout
 - Significant reduction of the project cost

Cost \approx \$ 3.3 M, mostly from Chinese consortium (with UIC and BNL)

FTS – Research & Development

3 Silicon disks:

- 12 wedges, each with 128 azimuthal & 8 radial strips
- Single-sided double-metal Silicon Mini-strip sensors
 - under development @UIC
- Several different frontend chips, APV25-S1 chip (IST)
 - DAQ system for FTS same as IST
 - Replicating the IST cooling system

4 sTGC disks:

- Based on ATLAS R&D from SDU
 - $\approx 0.5\% X_0$ per layer
 - Position resolution ~ 100 μm in x & y direction
- Read out with existing TPC electronics
- Prototype in preparation at SDU
 - ¼ length of ATLAS module
 - 30 cm x 30 cm module with 2 layers

APV25-S1

Summary / Outlook

- The STAR collaboration has proposed a forward detector upgrade that combines tracking and calorimetry at $2.5 < \eta < 4$.
- Hadron structure measurements are highly relevant for the physics of a future electron-ion collider.
- Further tests are planned during 2019 RHIC operations for a full installation and readiness after the beam energy scan (phase II).

arxiv:1602.03922

RHIC as a Polarized Proton Collider

Physics Performance

Matching jet reconstruction and partonic kinematics (3<η<4)

Drell-Yan identification (boosted decision trees)

FTS – Efficiencies & Resolution

Full detector simulation

 $\frac{\delta p_T / p_T \approx 25 - 50\%}{3^o < \theta < 8^o}$

