The STAR
Forward Rapidity Upgrade

Oleg Eyser
for the STAR Collaboration
5th Joint Meeting of the APS Division of Nuclear Physics
and the Physical Society of Japan
Waikoloa, Hawaii

October 23-27, 2018

Context

1. **Emerging Nucleons**
 How are gluons, sea quarks, and their intrinsic spins distributed in space and momentum in the nucleon?

2. **Nuclear Medium**
 How do colored quarks and gluons and colorless jets interact with the nuclear medium?
 How does the nuclear environment affect quark and gluon distributions?
 Are abundant low-momentum gluons confined within nucleons?

3. **Gluon Saturation**
 What happens to the gluon density at high energy?
 Are the properties of a saturated gluonic state universal among all nuclei?
Transverse Spin Effects

- Origin of large transverse asymmetries at high x_F
 \[A_{UT} = \frac{d\sigma^\uparrow - d\sigma^\downarrow}{d\sigma^\uparrow + d\sigma^\downarrow} \]

- Disentangle initial and final state effects
 - Transversity distribution
 - Spin-orbit correlations, fragmentation functions
 - Transverse momentum dependent vs. higher twist

Tagged jets

Charged pions

Pions in jets

Current data for Collins and Sivers asymmetry:
- COMPASS: $h_T^\pm < 1.6$ GeV
- HERMES: $h_T < 1$ GeV
- JLab Hall-A: $h_T < 0.45$ GeV
- JLab 12 (upcoming)
- RHIC 500 GeV: $1 < h < 4$ Collins
- STAR W bosons
- STAR pp DY: $\sqrt{s} = 500$ GeV
Helicity Asymmetries

\[A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \]

\[\int_{0.05}^{1} \Delta g(x, Q^2) dx = 0.2^{+0.06}_{-0.07} \]

Projections:

\[\sqrt{s} = 510 \text{ GeV} \]
\[\text{anti-}k_T, R = 0.6 \]
\[E_{T3} > 5 \text{ GeV} \]
\[E_{T4} > 8 \text{ GeV} \]

\[\sqrt{x_1} \cdot \sqrt{x_2} = m_{jj}/\sqrt{s} \]
Nuclear Distribution Functions

- Poorly constrained, esp. towards low x
- LHC data at very high Q^2
 \[R_{pA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{pA}}{dN_{pp}} \]
- Direct photons \rightarrow gluon PDF
- Drell-Yan production \rightarrow sea quarks $2.5 < \eta < 4.5$

Projections:
Gluon Saturation

- Saturation scale
 \[Q_A^2(x) \approx A^{1/3} Q_S^2(x) \]
- Scan kinematic range: \(x \) & \(Q^2 \)
 - Trigger \(p_T \)
 - Associated \(p_T \)
- Test \(A \)-dependence
 - \(p + Al, p + Au \)
- Other probes (forward)
 - \(\gamma \)-hadron correlation
 - \(\gamma \) –jet correlation

\[\text{Azimuthal Correlations} \]
\[W = 200 \text{ GeV} \]
\[\eta_1 = 3.8, \eta_2 = 0, \text{ central} \]
\[p_1 = 1.5 \text{ GeV}, p_2 = 0.2 - 1.5 \text{ GeV} \]
The STAR Forward Calorimeter System and Forward Tracking System

Highlights of the STAR midrapidity Physics Program after 2020

New detector upgrades for potential polarized $p + p$ collisions at $\sqrt{s} = 510$ GeV
Forward Calorimeter System

<table>
<thead>
<tr>
<th></th>
<th>p+p / p+A</th>
<th>A+A</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECAL</td>
<td>$\approx 10%/\sqrt{E}$</td>
<td>$\approx 20%/\sqrt{E}$</td>
</tr>
<tr>
<td>HCAL</td>
<td>$\approx 60%/\sqrt{E}$</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Preshower detector
EM calorimeter
- PHENIX PbSc
- New readout SiPM/APD
- Not compensating

Hadronic calorimeter
- $L = 4 \cdot \lambda_I$
- Sampling iron-scintillator
- Same readout

Calorimeter R&D as part of EIC studies, beam test, and in situ setup at STAR
Balance of cost and performance
Cost \approx 2.0 M
FCS – Research & Development

- Efforts for ECAL and HCAL as part of EIC R&D
- ECAL test in 2017
 - Hamamatsu SiPM $6 \times 6 \text{ mm}^2$
 - FEE boards and digitizers
 - Integrated into STAR (DAQ, trigger)
- FCS test in 2018
 - Large scale ECAL prototype with HCAL towers
Forward Tracking System

<table>
<thead>
<tr>
<th></th>
<th>p+p / p+A</th>
<th>A+A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking</td>
<td>charge separation</td>
<td>$\frac{\delta p}{p} \approx 20 - 30%$ at $0.2 < p_T < 2.0 \text{ GeV/c}$</td>
</tr>
</tbody>
</table>

- 3 layers of silicon mini-strip disk
 - $z = 90, 140, 187 \text{ cm}$
 - Builds on experience of STAR IST (Intermediate Silicon Tracker)

- 4 layers of small-strip Thin Gap Chambers
 - $z = 270, 300, 330, 360 \text{ cm}$
 - Use of STAR TPC electronics for readout
 - Significant reduction of the project cost

Cost ≈ 3.3 M, mostly from Chinese consortium (with UIC and BNL)
FTS – Research & Development

3 Silicon disks:
- 12 wedges, each with 128 azimuthal & 8 radial strips
- Single-sided double-metal Silicon Mini-strip sensors
 - under development @UIC
- Several different frontend chips, APV25-S1 chip (IST)
 - DAQ system for FTS same as IST
 - Replicating the IST cooling system

4 sTGC disks:
- Based on ATLAS R&D from SDU
 - $\approx 0.5\% X_0$ per layer
 - Position resolution $\sim 100 \mu m$ in x & y direction
- Read out with existing TPC electronics
- Prototype in preparation at SDU
 - $\frac{1}{4}$ length of ATLAS module
 - 30 cm x 30 cm module with 2 layers
The STAR collaboration has proposed a forward detector upgrade that combines tracking and calorimetry at $2.5 < \eta < 4$.

Hadron structure measurements are highly relevant for the physics of a future electron-ion collider.

Further tests are planned during 2019 RHIC operations for a full installation and readiness after the beam energy scan (phase II).
RHIC as a Polarized Proton Collider

- AGS
- LINAC
- Booster
- Hydrogen Jet Polarimeter
- Carbon Polarimeters
- Siberian Snakes
- PHENIX
- STAR
- Spin Rotators
- Tune Jump Quads
- Helical Partial Snake
- AGS pC Polarimeter
- Strong Snake
- 200 MeV Polarimeter
- Carbon Polarimeters
- Spin Flipper
- Siberian Snakes
- Polarized Source

Graph:
- Integrated polarized proton luminosity L[pb⁻¹]
- Time [weeks in physics]

- 2012 P = 52%
- 2013 P = 53%
- 2015 P = 55%
- 2017 P = 53%
- (L_peak limited)

- 2009 P = 34%
- 2006 P = 55%
- 2005 P = 47%
- 2003 P = 34%
Physics Performance

Matching jet reconstruction and partonic kinematics ($3<\eta<4$)

Drell-Yan identification (boosted decision trees)
Efficiencies & Resolution

Pions
- $p_T = 0.2$ GeV/c
- $p_T = 1.0$ GeV/c
- $p_T = 2.0$ GeV/c
dashed: wrong sign

Full detector simulation

$\delta p_T / p_T \approx 25 - 50\%$
$3^\circ < \theta < 8^\circ$

Muons
- $p_T = 0.2$ GeV/c
- $p_T = 1.0$ GeV/c
- $p_T = 2.0$ GeV/c