Correlations between semi-inclusive jet production and event activity in $\sqrt{s_{\rm NN}} = 200 \text{ GeV } p$ +Au collisions at STAR

2021 Fall Meeting of the APS Division of Nuclear Physics October 11-14, 2021

David Stewart (Yale University) for the STAR collaboration

Hard and soft processes

Event Activity (EA)

- Overall result of common, low-Q² processes
- Governed by npQCD

Jets

- Results of rare high- Q^2 processes
- Governed by pQCD

N_{part}

(Number of

nucleon

participants)

scales with

In A+A collisions

EA \propto N_{part}

- EA scales nicely with geometric centrality
- Bin events by EA and get bin average $N_{\rm part}$ and $N_{\rm coll}$

Jets $\propto N_{\rm coll}$

- Compare jet yield per N_{coll} in A+A collisions to jet yield per pp collision
- Suppression of jet yield per N_{coll} in high-EA (i.e. central) events is an important signal of QGP formation

In *p*+A collisions

$EA \propto N_{part}$

- EA relationship to geometry? Smaller system, larger fluctuations... much messier
- Trivially, $N_{\text{part}} = N_{\text{coll}} + 1$

Jets $\propto N_{\rm coll}$

- No suppression of jets per binary collision for inclusive (unbinned in **EA**) data
- Consistent with *p*+A events too small to form QGP

In *p*+A collisions

Strong effect on jet yield per $N_{\rm coll}$ when binned by EA

- Depends on $x_p \left(\approx \frac{2E_{jet}}{\sqrt{s}}\right)$
- Starts at $x_p \sim 0.1$
- In tension with jets-per-trigger measurements at lower x_p at ALICE

Motivates high- x_p jet measurements at RHIC

• Lower p_{T} reach, but measure jets up to $x_p \sim 0.5$

For
$$\sqrt{s_{\text{NN}}} = 200 \text{ GeV collisions:}$$

 $x_p \approx \frac{2E_{\text{jet}}}{\sqrt{s}} = \frac{2E_{\text{jet}}}{200 \text{ GeV}} = \frac{1}{100} p_{\text{T, jet}} \cosh \eta \approx \frac{1}{100} p_{\text{T, jet}} \text{ or } \frac{1}{100} E_{\text{T, trigger}}$

Measuring event activity (EA) at STAR

- Measure the jet (& possibly triggers)
- Measure EA elsewhere, separated in η - ϕ phasespace

- EA (high- η) (EA_{BBC})
- EA (transverse- ρ) (EA_{ρ})
- or both ($\mathbf{EA}_{\mathbf{BBC}} \cap \mathbf{EA}_{\rho}$)

→ charged jet spectra per
 trigger are suppressed in
 high-EA events relative to
 low-EA events

• Trivial autocorrelation

Jets selectively contaminate EA signal at high/low-EA?

- Jet quenching at high-EA
- High x_p scatterings (⇒ Trigger/jet spectra formation) correlate to EA due to effects before QGP formation

• Trivial autocorrelation

Jets selectively contaminate EA signal at high/low-EA?

- Jet quenching at high-EA
- High x_p scatterings (⇒ Trigger/jet spectra formation) correlate to EA due to effects before QGP formation

• Trivial autocorrelation

Jets selectively contaminate EA signal at high/low-EA?

- Jet quenching at high-EA ?
- High x_p scatterings (\Rightarrow Trigger/jet spectra formation) correlate to EA due to effects before QGP formation ?

Results: no recoil-side bias in jet quenching (EA_{BBC})

Not like jet quenching: trigger-side and recoil-side equally suppressed

ΆR

• No surface bias/path length dependence of observed jet yield suppression

Results: no broadening of acoplanarity with EABBC >8 GeV/c $\mathsf{N}_{|\Delta\phi|>(\pi-r)}$ Q(r) =jetş dI∆∲_{raw} STAR Preliminary **ger** dN_{jets w. p_T} ho+Au $\sqrt{s_{ m NN}}$ = 200 GeV $Q(r = \frac{\pi}{16})$ Anti- k_T raw charged jets 69.1 ± 1.3% 10⁻¹ ΔΦ R = 0.4, $|\eta_{jets}| < 0.6$ 66.7 ± 1.0% non-background subtracted A=________A=________ 70-90%EA (low), $E_{-}^{trigger} > 8 \text{ GeV}/c$ ← 56.2 ± 0.6% 0-30%EA (high), E₁" >8 GeV/c 10⁻² 70-90%EA (low), $\mathsf{E}_{\tau}^{\mathsf{trigger}} \in [4,6] \, \mathrm{GeV}/c$ $Q(r = \frac{\pi}{8})$ 16 0-30%EA (high), E_{τ}^{tn} ∈[4,6] GeV/*c* → 89.4 ± 0.9% **─** 89.7 ± 0.6% **π**8 10⁻³ ● 82.7 ± 0.4% $Q(r = \frac{\pi}{4})$ <u>π</u> ---- 98.5 ± 0.3% 10⁻⁴ 0.5 1.5 2.5 2 3 0 $\Delta \phi_{raw}$ Percentage of jets with $\left|\phi_{\text{jet}} - \phi_{\text{trigger}}\right| > \frac{15}{16}\pi$ decreases by 1.5 σ from **low-EA** to **high-EA** AR 🖈 **David Stewart** DNP 12 October 2021 10

• Trivial autocorrelation

Jets selectively contaminate EA signal at high/low-EA?

- Jet quenching at high-EA ?
- High x_p scatterings (\Rightarrow Trigger/jet spectra formation) correlate to EA due to effects before QGP formation ?

• Trivial autocorrelation

Jets selectively contaminate EA signal at high/low-EA?

- Jet quenching at high-EA
- High x_p scatterings (\Rightarrow Trigger/jet spectra formation) correlate to EA due to effects before QGP formation ?

DNP

12 October 2021

David Stewart

• Trivial autocorrelation

Jets selectively contaminate EA signal at high/low-EA?

- Quenching of jets & triggers at high-EA _?
- High x_p scatterings (⇒ Trigger/jet spectra formation) correlates to EA due to effects before QGP formation

Summary-Outlook

• **EA** correlated with $x_p \left(\equiv \frac{2 p_T}{\sqrt{s_{NN}}} \right)$

 \Rightarrow Biases $p_{\rm T}\text{-}{\rm spectra}$ normalized per trigger

- Jet mass and acoplanarity are not EA-dependent
- Within precision of measurements, jet quenching not observed
- Opportunity to probe initial state conditions
 - Mechanism behind correlations not yet known:
 - "Simple" energy conservation?
 - "Color transparency" / shrinking proton?
 - Communication between successive *p*+nucleon collisions?

the end

David Stewart DNP 12 October 2021

Backup

Measure di-jet momentum asymmetry vs EA

- $p_{\rm T}$ balance of leading to subleading (recoil) jet distribution
- predicted to not be EA dependent

Simulated phase-space caused semi-inclusive suppression

- Each entry includes the single leading jet
 - N_{jets}:N_{triggers}:N_{events} = 1:1:1

PHENIX Results

Moriond QCD 2021 (https://moriond.in2p3.fr/QCD/2021/FridayAfternoon/Lajoie.pdf), 2021

PYTHIA $S_{0-30\% EA}/S_{70-90\% EA}$ with and without dijet bias

 Using "opposite-side" BBC for EA sorting reduces suppression by ~constant factor for outer and full, but not inner, BBC

Suppression persists with BBC_{inner} EA selection

Recoil jets ($|\phi_{jet}-\phi_{trigger}| > (7/8)\pi$)

Smaller expected dijet kinematic effects in p+Au collisions than pp collisions, due to multiple soft collisions measured with hard collisions

Suppression of $S_{0-30\%}/S_{70-90\%}$ persists with EA selection by BBC_{inner} or BBC_{outer} instead of BBC_{full}

How to compare jet spectra

- a. Per N_{bin} (inclusive):
 - Measure all jet spectra
 - Sort by EA into centrality bins
 - Compare to pp jet spectra scaled by N_{bin} from Glauber model
- b. Per-trigger (semi-inclusive)
 - Measure $p + Au \rightarrow trigger + jet + X$
 - Separate into EA bins
 - Measure jet per trigger spectra (S_{EA})
 - Compare spectra in high to low EA ($S_{\text{EA-high}}/S_{\text{EA-low}}$)
 - c. Per-jet (shape)
 - Compare shapes in different EA bins
 - Example: jet mass distribution

M [GeV/c²]

Р С

M [GeV/c²]

Data: BBC Event Activity Selection and Jet ϕ binning

- Jets:
 - anti-kT
 - R=0.4
 - |n|<0.6

- Binned in $\Delta \phi$ in $\pi/8$ slices from the trigger
- Jet spectra (S) presented in this talk are raw uncorrected, detector level
- Tracking efficiency is EA-independent & negligible underlying event
 - $S_{0-30\% EA}/S_{70-90\% EA}$ expected to be insensitive to corrections

-π

7. 87

6

0 yr

min ogt

1/2

OF

triggel

. 3 87

- Both near and recoil jets suppressed in high EA relative to low EA
- n.b.: These are charged jet spectra; the near-side jets have a neutral energy fraction (NEF) bias because near side must also always contain the neutral trigger
 - This NEF bias is not present in the recoil jets
 - This NEF bias on the near-side is expected to decrease at higher p_{T,jet}

31

Geometry: Jets/ N_{coll} over all b are as expected

2015 & 2016: R_{p/d}+A consistent with unity

The average number of jets per N_{coll} (integrated over all b) is identical for p/d+A collisions as in pp collisions (values of R≈1)

STAR 🛧

STAR data: EA

- EA_{BBC} & EA_{TPC} positively correlated
- Can compare high-EA events to low-EA events using:
 - EA_{BBC}
 - EA_{TPC}
 - Both: $\mathbf{EA}_{\mathbf{BBC}} \cap \mathbf{EA}_{\mathbf{TPC}}$

Where these fit in small system measurements

Semi-inclusive small system jet measurements:

- First at high x_p
- First at high RHIC energies
- Jet spectra per trigger suppression results at least partially from correlation:
 - Higher Q² scattering:
 ⇒ Higher p_T jets
 ⇒ Lower activity everywhere
 - outside of dijet (both in η and ϕ)
- No jet mass modification
- Predict dijet momentum balance and other jet substructure observables EA independent

