

\circ Quark spins contribute ~30% of the spin. • Gluon spins appear to contribute significantly. • At RHIC (Relativistic Heavy Ion Collider) we collide longitudinally polarized protons. • For this analysis, we use the 510 GeV data set taken in 2013 with the Endcap Electromagnetic Calorimeter (EEMC) of the STAR (Solenoid Tracker at RHIC) detector. • We are interested in the neutral pions (π^0 s) and η particles produced from the collisions. $\circ \pi^0$ s and η s decay into two photons which

• With the known polarization and luminosity the STAR spin program as A_{μ} can be related to the gluon spin contribution to proton spin.

Equation 1: The spin of the proton $(\frac{1}{2}\hbar)$ as a sum of four components.

 $\frac{1}{2}\hbar = \frac{1}{2}\Delta\Sigma + \Delta G + L_a + L_a$

momentum

- and left to collide until their numbers are too small (~6 hr). A data collection run lasts \sim 30 min; an average of \sim 12 runs from one fill.
- the fill level
- the mean of that observable for all runs.
- In fill-level QA we fit the measured two-photon invariant mass plus a background function (5th order Chebyshev polynomial).

Figures 5 (left) and 6 (right): Two photon invariant mass spectra showing the π^0 s and η s

Determining the Longitudinal Double-Spin Asymmetry (A₁₁) for π^0 and η **Production from STAR 2013 Endcap Calorimeter Data**

Emily Nelson, Madison Wallner, and Roshan Gautam on behalf of the STAR Collaboration Mentors: Profs. Shirvel Stanislaus, Adam Gibson, David Grosnick, Donald Koetke, Paul Nord

Proton Spin and the STAR Experiment

π^{o} and η Extraction Asymmetry • The invariant mass of $\pi^0(\eta)$ particles can be calculated from the energies • We use the following equation to calculate the asymmetry (A_{LL}) of π^0 of the two photons into which they decay, and the angle between the two and η production from collision of longitudinally polarized protons. $\mathbf{M}_{\gamma\gamma} = (\mathbf{E}_1 + \mathbf{E}_2) \sqrt{1 - (\frac{\mathbf{E}_1 - \mathbf{E}_2}{\mathbf{E}_1 + \mathbf{E}_2})^2} \ sin(\frac{\theta}{2})$ $A_{LL} = \frac{1}{P_P P_V} \frac{(N^{++} - R_3 N^{+-})}{(N^{++} + R_2 N^{+-})}$ • N is the total number of π^0 s (η s) measured for different spin alignments • $N^{++}(N^{--}) =$ both colliding protons have their spin aligned (anti-aligned) with **Equation 2:** The invariant mass $(M_{\nu\nu})$ of a $\pi^0(\eta)$ their momentum calculated based on the two photon energies (E_1 and E_2) • N^{+-} (N^{-+}) = one colliding proton has its spin aligned with its momentum; the and the angle between them θ . other proton has its spin anti-aligned with its momentum • $P_{\rm B}$ = polarization of the RHIC "blue" beam • P_{y} = polarization of the RHIC "yellow" beam • R_3 = luminosity ratio of the two spin configurations (N⁺⁺ and N⁺⁻) Figure 4: A visual representation of the spin of a particle being aligned or anti-aligned with its momentum • Using this information, we can measure the number of π^0 s (η s), an essential factor in calculating the asymmetry of $\pi^0(\eta)$ production (A₁₁). Invariant Mass Signal Fraction • The signal fraction (Figures 9 and 10) is the number of π^0 s (η s) within 2σ of the $\pi^{0}(\eta)$ peak divided by the total number of candidates in this region. • Figures 5 and 6 show the results of the fit to the data: $\circ \pi^0$ candidates that are within 2σ (gold lines) in Figure 5 $\circ \pi^{0}(\eta)$ signal function = red line Background function = blue line the histogram) π^{o} Fill Number **Figure 7:** Fitted π^0 mass vs Fill Number • Figure 8 shows the reconstructed η mass from fitting for all analyzed fills • Fills that have significantly different values, such as the fill Fill Number circled on figure 8, are closely **Figure 9:** π^0 signal fraction vs. fill number. The examined. signal fraction of π^0 production is around 0.75.

set

 Larger error bars are due to fewer η s produced in the collisions.

n is anti-aligned with momentum

U.S. DEPARTMENT OF

O Sum of signal + background = black line (matches the measured data of)

This is similar to the results from the 2012 data

Figure 10: η signal fraction vs. fill number. The signal fraction of η production is around 0.2. It is lower than that for π^0 s due to the larger background.

> Office of Science