

Oleg Eyser Brookhaven National Laboratory for the STAR Collaboration

RHIC/AGS Annual Users Meeting

June 7-10, 2022

Supported by

Completing the RHIC Program

- Unique polarized p + p / p + A collisions
- RHIC Run 22: $p^{\uparrow} + p$ at $\sqrt{s} = 508 \text{ GeV}$
 - STAR Forward Detector upgrade
- Plan for the remaining years: $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - Au + Au
 - $p^{\uparrow} + Au$
 - $p^{\uparrow} + p$
- EIC starts after 2030
 - The full potential of the EIC relies on complementary probes
 → unique data from hadronic collisions

Beam Use Request 2024

Equal integrated luminosity per nucleon

Physics Opportunities with STAR

- $\sqrt{s} = 200 510 \text{ GeV}$
- Forward detector $2.5 < \eta < 4.0$
- Wide coverage 0.005 < x < 0.5
- $x Q^2$ range
- TMD parton distribution functions
- Evolution effects

STAR in Run 22

- Barrel: $-1 < \eta < 2.0$ / Forward $2.5 < \eta < 4.0$
- Full azimuthal coverage
- Exceeded projection: $\mathcal{L}_{int} > 400 \text{ pb}^{-1}$
- Figure of merit $LP^2 \approx 120 \ pb^{-1}$ with Forward Detectors and iTPC
- Midrapidity and forward triggers

Forward Detector Upgrade

- Calorimeters
 - Hadronic calorimeter (FeSci)
 - Electromagnetic calorimeter (PbSci)
- Preshower detector (EPD)
- Tracking
 - Small-strip Thin Gas Chambers (4 planes)
 - Silicon tracker (3 disks)

	p+p / p+A	A+A		p+p / p+A	A+A
Tracking	charge separation photon suppression	$rac{\delta p}{p}pprox 20-30\%$ at $0.2 < p_T < 2.0~{ m GeV}/c$	ECAL	$pprox 10\%/\sqrt{E}$	$pprox 20\%/\sqrt{E}$
			HCAL	$\approx 60\%/\sqrt{E}$	n/a

Forward Detector Upgrade

- Calorimeters
 - Hadronic calorimeter (FeSci)
 - Electromagnetic calorimeter (PbSci)
- Preshower detector (EPD)
- Tracking
 - Small-strip Thin Gas Chambers (4 planes)
 - Silicon tracker (3 disks)

Despite Covid, installation and commissioning finished on schedule and were ready for data taking in Run 22!

Transverse Spin Asymmetries

- Observation of large transverse single-spin asymmetries at forward rapidity
- Persistent at energies up to $\sqrt{s} = 500 \text{ GeV}$
- Not consistent with LO pQCD

• TMDs can introduce a k_T -dependence (initial and/or final state, not collinear)

 $\Lambda_{QCD} < Q_T \ll Q$

• Collinear higher-twist effects

Transverse Spin Asymmetries

- Sivers effect:
 - Correlation of proton spin and parton transverse momentum (initial state)
 - Process dependent asymmetry Sivers_{DIS} = - (Sivers_{DY} or Sivers_{W/Z})
- Collins effect:
 - Correlation of parton spin and transverse momentum of hadron (final state)

- Observation of large transverse single-spin asymmetries at forward rapidity
- Persistent at energies up to $\sqrt{s} = 500 \text{ GeV}$
- Not consistent with LO pQCD

- TMDs can introduce a k_T -dependence (initial and/or final state, not collinear)
 - $\Lambda_{QCD} < Q_T \ll Q$
- Collinear higher-twist effects

Inclusive Hadrons

- STAR Forward 2.5 $< \eta < 4.0$
- Hadronic calorimeter
- Dedicated hadron triggers with different thresholds (p_T)
- $\sqrt{s} = 508 \text{ GeV}$ (2022) and $\sqrt{s} = 200 \text{ GeV}$ (2024)

Inclusive Jets

- Use charge tagging to avoid cancellation of Sivers asymmetry
- Hadronic calorimeter \rightarrow enhance high-z hadrons
- Not statistically limited

AnDY: PLB 750 (2015) 660

Projection for $\sqrt{s} = 200 \text{ GeV}$ Similar to 2024 request

First Observation of Sivers-Effect in Dijets

• Direct observation of spin-orbit correlation:

 $\left\langle \vec{\mathbf{S}} \cdot \left(\vec{p} \times \vec{k}_T \right) \right\rangle \neq 0$

- Sort by net-charge to enhance u/d quarks
- Corrected to partonic level with embedded simulation
- 2012+2015: $\sqrt{s} = 200 \text{ GeV}$

- Dedicated dijet triggers in Run 22
- $\sqrt{s} = 508 \text{ GeV}$
- Forward rapidity \rightarrow high x

Drell-Yan / Weak Bosons

• Process dependence of spin-orbit correlations: SIDIS vs. p + p

O. Eyser / RAUM 2022

- Two scales for TMD measurement
 - p_T of jet
 - j_T of hadron in jet
- Identified hadrons (π^{\pm} , K^{\pm} , p)
- Multi-dimensional binning: p_T , j_T , x_F , z

Previously: $\sqrt{s} = 500 \text{ GeV}$ Phys. Rev. D97 (2018) 032004

 $d\sigma^{\uparrow} - d\sigma^{\downarrow} \propto d\Delta\sigma_{0} \sin\phi_{S} + d\Delta\sigma_{1}^{+} \sin(\phi_{S} + \phi_{H}) + d\Delta\sigma_{2}^{+} \sin(\phi_{S} + 2\phi_{H})$ $+ d\Delta\sigma_{1}^{-} \sin(\phi_{S} - \phi_{H}) + d\Delta\sigma_{2}^{-} \sin(\phi_{S} - 2\phi_{H})$

O. Eyser / RAUM 2022

- Two scales for TMD measurement
 - p_T of jet
 - j_T of hadron in jet
- Identified hadrons (π^{\pm}, K^{\pm}, p)
- Multi-dimensional binning: p_T , j_T , x_F , z

 $d\sigma^{\uparrow} - d\sigma^{\downarrow} \propto d\Delta\sigma_{0} \sin\phi_{S} + d\Delta\sigma_{1}^{+} \sin(\phi_{S} + \phi_{H}) + d\Delta\sigma_{2}^{+} \sin(\phi_{S} + 2\phi_{H})$ $+ d\Delta\sigma_{1}^{-} \sin(\phi_{S} - \phi_{H}) + d\Delta\sigma_{2}^{-} \sin(\phi_{S} - 2\phi_{H})$

O. Eyser / RAUM 2022

Collins asymmetries:

arxiv:2205.11800

Previously: $\sqrt{s} = 500 \text{ GeV}$

Phys. Rev. D97 (2018) 032004

 $\sqrt{s} = 200 \text{ GeV}$

2012/2015

- Two scales for TMD measurement
 - p_T of jet
 - j_T of hadron in jet
- Identified hadrons (π^{\pm} , K^{\pm} , p)
- Multi-dimensional binning: p_T , j_T , x_F , z

- Q^2 evolution
- Nuclear effects
- Improved PID with iTPC
- Additional data with Forward Detectors

O. Eyser / RAUM 2022

- Two scales for TMD measurement
 - p_T of jet
 - j_T of hadron in jet
- Identified hadrons (π^{\pm} , K^{\pm} , p)
- Multi-dimensional binning: p_T , j_T , x_F , z
- Large overlap with EIC kinematics
- Complement existing SIDIS data at high-*x*

Recap from page 3

Ultraperipheral Collisions

- Generalized Parton Distributions: 2+1D picture of the proton
- Current knowledge from exclusive measurements in DIS
- Unique at RHIC: transversely polarized UPC
- First look at E_a

σ (arb. units)

5

10

15

20

25

30

$$A_N^{\gamma} \propto p_T \frac{\mathrm{Im} H^g E^{g*}}{|H^g|^2}$$

STARlight p[↑]Au, γp[↑]

-1<n<2.2, 2.5<n<4

 $W_{\gamma p}^{35} (GeV)^{40}$

-1<ŋ<1 -1<n<2.2

-0.2

10

15

20

25

30

W³⁵_{γp} (GeV)

O. Eyser / RAUM 2022

in Run 22

Non-linear Parton Dynamics

- Recent analysis of dihadron correlations
- Compare p + p, p + A
 - Run 15: Only Ecal at 2.6 $< \eta < 4.0 \rightarrow \pi^0 \pi^0$

 $p_{T,trig} > p_{T,assoc}$

$$C(\Delta \phi) = \frac{N_{pair}(\Delta \phi)}{N_{trig} \Delta \phi}$$

Various probes to test non-linear QCD effects with new Forward Detectors:

- charged dihadrons
- *γ*-jet
- dijets

O. Eyser / RAUM 2022

Nuclear Modification & Nuclear PDFs/FFs

Direct photon and Drell-Yan at forward rapidity

- Direct access to initial state
- Medium to low x at moderate Q^2
- Nuclear modification R_{pA}

Hadrons in jets

• In-medium effect of hadronization

$$R_{pA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN^{pA}}{dN^{pp}}$$

- A

Summary

- STAR has finished a very successful Run 22 at $\sqrt{s} = 508 \text{ GeV}$
 - Forward detector upgrade $2.5 < \eta < 4.0$
 - $LP^2 \approx 120 \text{ pb}^{-1}$
 - Dedicated triggers for jets/dijets, hadrons, Drell-Yan
- Polarized $p^{\uparrow} + p$ and $p^{\uparrow} + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV in 2024
 - Expand kinematic range of transverse spin measurements
 - Unambiguous probes at forward rapidity: charged hadrons, jets, γ , Drell-Yan
- Wide coverage in $x Q^2$ with large overlap at EIC
 - Transversity, Sivers & Collins effects, nuclear PDFs and more
 - Onset of non-linear effects in QCD
 - QCD evolution of TMDs
 - Test properties of universality and factorization

W-Boson Reconstruction

 $p + p \rightarrow W^{\pm} \rightarrow e^{\pm} + v$

- W-boson decay
 - $p_{T,W}$ is lost
 - Almost no azimuthal angle correlation
- Measure recoil from the collision (tracks and EMC)

 $p_{T,W} = p_{T,e} + p_{T,v} = p_{T,recoil}$ $p_{T,recoil} = \sum (p_{T,TPC} + E_{T,EMC})$

Azimuthal Angle Smearing

• Transverse spin asymmetries are measured through azimuthal modulations:

 $d\sigma(\phi) = \sigma_0 [1 + PA_N \cos(\phi)]$

$$A_N = \frac{d\sigma(\phi) - d\sigma(\phi + \pi)}{d\sigma(\phi) + d\sigma(\phi + \pi)} \qquad \qquad A_N = \frac{1}{P} \frac{N_\phi - N_{\phi + \pi}}{N_\phi + N_{\phi + \pi}}$$

- Toy Monte Carlo study → determine asymmetry dilution
 - 100k MC samples based on input distribution from embedding (per η -bin)

$$D = A_{N,meas}/A_{N,input}$$

New Results for Z^0

 $p + p \rightarrow Z^0 \rightarrow e^+ + e^-$

- Experimentally very clean
 - Two high- p_T electrons (e^+ , e^-) from same vertex
- Leading systematic uncertainty from energy resolution
- Comparison with PRL 126 (2021) 112002 (more details in arxiv:2103.03270)

Unpolarized TMDs

 $p + p \rightarrow Z^0 \rightarrow e^+ + e^-$

- Differential cross section of high interest for TMD-PDF fits
 - Pavia group, JHEP 07 (2020) 117

- 2017 data doubles the previous statistics
- Unfolded p_T spectrum
- Systematics from energy resolution and electron selection

Global luminosity uncertainty 8.5% not included in the plot