

Measurement of the event multiplicity dependence of J/ ψ production in p+p collisions at $\sqrt{s} = 510$ GeV with STAR at RHIC

Brennan Schaefer (Lehigh University), for the STAR Collaboration

Existing measurements at both $\sqrt{s} = 200$ GeV from STAR and $\sqrt{s} = 7$ TeV from ALICE have shown a fasterthan-linear rise for the self-normalized J/ψ yield at mid-rapidity as a function of charged particle multiplicity. In this poster we present work in progress toward a new high-statistics measurement of inclusive J/ ψ production versus event multiplicity in p+p collisions at $\sqrt{s} = 510$ GeV with the STAR experiment at RHIC. At mid-rapidity, calorimeter-triggered events are selected for candidate J/ψ detection through the dielectron decay channel.

250

Motivation

- Study of J/ψ production vs. event activity explores correlation between hard and soft processes
- Existing measurements from STAR and ALICE show a faster-than-linear rise in mid-rapidity J/ψ production vs. charged particle multiplicity
- 2017 data features a 4x increase in luminosity (79.5 pb⁻¹) over earlier 200 GeV p+p data

The STAR Experiment

Signal Extraction

<u>Time Projection Chamber:</u> • Momentum and dE/dx

<u>Vertex</u> <u>Position</u> <u>Detector</u>:

- Min-bias trigger
- Online vertex
- Pileup event rejection

Event Selection

<u>Barrel Electromagnetic</u> Calorimeter:

- Trigger on, identify electrons
- <u>Time Of Flight:</u>
- Particle identification
- Pileup track rejection

from unlike-sign e[±] e [‡]airs • CrystalBall + linear fit

• Subtract like-sign e⁺ e⁻ pairs

Corrections and Calibrations

- Event multiplicity characterization requires a luminosity-dependent correction
- Correct for multiplicity-dependent event triggering and vertex finding efficiencies for both MB and J/ψ events
- Correct for remaining pileup effects

Outlook, Summary, and Conclusion

- A key goal of this work will be to extend the reach into higher event multiplicity where model calculations diverge, enabled by prolific dataset size
- Future extension to include di-muon channel to access J/ψ at low p_T

Trigger: BEMC High Tower $E_T \gtrsim 4.2 \text{ GeV}$ -40 to 40 cm vzTPC Particle ID Cuts TPCn σ e -1.9 to -3.0 0.67 to 3.33 E/p 0.97 to 1.03 $\beta_{\rm TOF}$

Tracking Cuts -1.0 to 1.0 η > 0.2 GeV/c p_{T} DCA < 1.0 cm E_{TOW}/E_{CLU} > 0.5 Quality Cuts TPC

• As a candidate explanatory mechanism, multi-parton interactions offer a rich subtext to investigate transverse structure, color reconnection, even collectivity in p+p

Work supported by DOE Grant # DE-SC0023491

The STAR Collaboration https://drupal.star.bnl.gov/STAR/presentations

