Probing Gluon Contribution to Proton Spin with STAR 2015 Endcap Electromagnetic Calorimeter Data

The STAR Experiment & Its Goals

- A primary goal of the Solenoidal Tracker at RHIC (STAR) Experiment at Brookhaven National Laboratory is understanding the gluon contribution to the proton's spin.
- The Relativistic Heavy Ion Collider (RHIC) collides high energy polarized proton beams to produce many particles such as neutral pions (π^0) and eta (η) mesons.
- These particles decay into two photons whose energies and positions are measured by the Endcap Electromagnetic Calorimeter (EEMC) (Fig. 1).
- Photon pairs are reconstructed to calculate the invariant mass of the particles from which they decayed.

Run-Level QA - Introduction

- The data which we will use to calculate the asymmetry of particles like π^0 s are divided into:
 - **Fills** Batches of protons filled into RHIC, which typically last around 6-8 hours.
 - **Runs -** Segments of data collected within a Fill, which typically last around 30 minutes. They keep the data in manageable chunks.
- I primarily focused on Run-Level Quality Assurance (QA) looking for:
 - Irregularities or inconsistencies that could impact the eventual ALL analysis
 - General trends between Runs
- This is typically done by plotting distributions for various particles given Run-Level datasets.
- For the final ALL analysis, we will make more refined π^0 distributions using larger Fill-Level datasets. They involve:
 - Additional cuts
 - Higher statistics
 - Better fits

Christopher Noga on behalf of the STAR Collaboration Mentors: Prof. Adam Gibson, Prof. Shirvel Stanislaus, Prof. David Grosnick, Prof. Donald Koetke, Mr. Paul Nord Valparaiso University Department of Physics & Astronomy

Run-Level QA - "Bug"

- Our old Run-Level QA methods were affected by accidental numerical losses. When we naïvely cut on the data, large amounts of π^0 dropped out.
- Our event data trees are stored as multiple independent vectors, but when we allow ROOT to interpret them as arrays it assumes that they should be indexed together.
- For example, if the trigger of interest (e.g. EHT0) is satisfied at index 2, then only the π^0 at index 2 will be considered *even if* there are multiple π^0 s in the event.

π^{o} Reconstruction & Asymmetry Calculations

• We use the equation below to reconstruct the invariant mass of particle candidates such as the π^0 (M_{YY} = 0.135 GeV) from the energies (E_1 and E_2) and opening angle (θ) of the two photons.

 $M_{\gamma\gamma} = 2\sqrt{E_1 E_2} \sin\left(\frac{1}{2}\right)$

• Investigating the invariant mass of a photon pair is a common method to separate the more likely candidates from background noise. If a particle candidate has a mass close to its nominal value, then we will consider and count it.

• With a good sample of π^0 candidates, we can calculate the asymmetry of their production. • The asymmetry of π^0 production is sensitive to the gluon spin contribution to the proton's spin. N - Total number of π^0 s measured for different spin alignments (+, -)

$A_{LL} =$	1	$(N^{++} -$	$R_3 N^{+-}$
	$\overline{P_B P_Y}$	$(N^{++} +$	R_3N^{+-}

P^B - Polarization of the RHIC "blue" beam *P_Y* - Polarization of the RHIC "yellow" beam $|R_3$ - Luminosity ratio of the two spin configurations (N++ and N+-)

Office of

Science

