

Measurements of elliptic flow and triangular flow in forward and backward pseudo-rapidity in Au+Au Collisions at $\sqrt{s_{NN}}$ = 19.6 GeV in RHIC-STAR

1.Physics Motivation

- Directed flow (v_1) , elliptic flow (v_2) , and triangular flow (v_3) are sensitive to the equation of state and properties of dense nuclear matter.

- Hydrodynamic models show that the rapidity dependence of v_2 and v_3 is sensitive to the temperature dependence of shear viscosity $\eta/s(T)$. PHOBOS reported η dependence of v_2 but with large uncertaintie β 0.05 at low energies. No v_3 data are reported in the forward and backward regions so far.

The precise measurements of rapidity dependence of v_n in low energies help to constrain the temperature and baryon chemical potential dependence of $\eta/s!!$

2. STAR experiment

A. M. Poskanzer and S. A. Voloshin. PRC.58,1671(1998)

EPD (Event Plane Detector)

Denicol et.al, PRL 116, 212301 (2016)

Quark Matter 2025

TPC (Time Projection Chamber) -Reconstruct charged particles. **iTPC (inner TPC)**

-better resolution and wider acceptance by the inner TPC upgrade. $(|\eta| < 1.0 \text{ changed to } |\eta| < 1.5)$

Sub-events defined in this analysis for event plane determination

3.Analysis method

EPD multiplicity weight for v_n

Compared with two calculations with UrQMD model

- v_2 decreases with rapidity, but bump structures seen around $|\eta| = 4$.
- The bump starts to appear at $|\eta| \sim 3$, which coincides with the beam rapidity at 19.6 GeV (y_{beam} = 3) where spectator contribution starts to come in.
- The bump increases in more peripheral collisions, likely due to spectators.
- Our v_2 is consistent with PHOBOS with a better precision.
- Similar bump structures are seen in UrQMD, where spectators are propagated throughout simulation.
- UrQMD v_2 without protons and neutrons (main component of spectators) doesn't show the bump structures.

> The bump structures most probably originate from spectators in forward/backward at 19.6 GeV. BES-II is a good opportunity to investigate this effects!!

- v_2 has been measured in -5.1< η <5.1 with high precision at 19.6 GeV using STAR BES-II data.
 - From η and centrality dependence, there is a clear bump structure in v_2 , especially in peripheral collisions.
 - The spectators are likely contributing to the v₂ bump structure at 19.6 GeV. UrQMD also shows the similar structure.
 - Analysis for v_3 is now ongoing.

5.Summary

