

ver fastjet.com

Semi-inclusive jet mass measurement in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with STAR

Jeongmyung KANG for the STAR collaboration (Sejong University)

2025 Hot-Quarks

May 11–17, 2025

Zipeng Mountain Guangyuan International Conference Center

Office of

Science

Supported in part by the

Jet and jet mass (M_{jet})

≻Jet

- Algorithmically clustered final state particles (bunch of stable hadrons)
- Useful tool to study pQCD in pp collisions and properties of QGP in AA collisions
- \succ How to calculate the Jet mass (M_{jet})?

•
$$M_{\text{jet}} = |\Sigma_{i \in \text{jet}} p_i| = \sqrt{E^2 - \vec{p} \cdot \vec{p}}$$

SAR

Why do we measure jet mass?

Jet 'invariant mass' → > Substructure

≻Jet mass cross-section

- QCD radiation induces the momentum transfer (~virtuality) to the massless parton
- QCD radiation assigns peak and width to $\sigma(M_{\rm jet})$
- $\sigma(M_{jet})$ contains radiation pattern info in jets

Jet mass in heavy-ion collisions

≻The goal of this study

>Measuring M_{jet} in wide $p_{T,jet}$ range

Searching modification of final-state radiation pattern in AA

➢Searching modification of parton virtuality evolution

- pp : gradually decreased
- AA : ?

SIAR

Difficulties of jet measurements in AA

Combinatorial background

- Lage background particles uncorrelated with hard scattering are created in AA collisions
- We cannot clearly distinguish signal jets and background jets on an event-wise basis, especially at low p_T and large R
- $M_{\rm jet}$ and $p_{\rm T,jet}$ of signal jets are distorted due to the background particles
- ➤ Chellenges
 - How do we subtract the contribution from background jets?
 - How do we correct the distorted signal jets?

Semi-inclusive recoil jets measurement

STAR

>How do we subtract the contribution from background jets?

> We can't distinguish signal jets and background jets in data

Semi-inclusive recoil jets measurement

STAR

>How do we subtract the contribution from background jets?

> Many of background jets can be easily discarded by selecting recoil-side jets from the hard trigger particle

- Mixed-event technique can further remove the background jets
- > Toy study example :
 - Signal : A single high $p_{\rm T}$ (15 GeV/c) particle in each event
 - Background : Thermal model
 - Then, $(p^{\text{reco}}_{T,\text{jet}}) = 15 \pm \sigma \text{ GeV}/c$

 \succ SE can be decomposed by two parts

- SE = Smeared signal + bkg
- We need to subtract bkg in SE

- SE = (Smeared signal) + (bkg in SE)
- SE (bkg in SE) = (Smeared signal)
- But we don't know (bkg in SE)
- Can we make a proxy of (bkg in SE)?
 - Mixed-event (ME) technique

- Mixed-event technique can further remove the background jets
- \succ Toy study example :
 - Signal : A single high p_T (15 GeV/c) particle in each event
 - Background : Thermal model
 - Then, $(p^{\text{reco}}_{T,\text{jet}}) = 15 \pm \sigma \text{ GeV}/c$

 \succ SE can be decomposed by two parts

- SE = Smeared signal + bkg
- We need to subtract bkg in SE

- SE = (Smeared signal) + (bkg in SE)
- SE (bkg in SE) = (Smeared signal)
- But we don't know (bkg in SE)
- Can we make a proxy of (bkg in SE)?
 - Mixed-event (ME) technique

➤ Mixed-event

- Synthesizing uncorrelated events from real data events within the same class
- ME ~ bkg in SE
- Yield corrected spectra (SE-ME)
 - Subtract ME instead of (bkg in SE) in ensembel level
 - SE-ME = (Smeared true) + (bkg in SE) ME ~ (Smeared true)

> Mixed-event

- Synthesizing uncorrelated events from real data events within the same class
- ME ~ bkg in SE
- Yield corrected spectra (SE-ME)
 - Subtract ME instead of (bkg in SE) in ensembel level
 - SE-ME = (Smeared true) + (bkg in SE) ME ~ (Smeared true)

Uncorrelated background effect

➤How do we correct the distorted signal jets?

- STAR
- Jet reconstruction has been applied in event-by-event

> Proxy of background jet four-vector $(p_{bkg,jet}^{\mu})$

- Calculated by $p_{\rm T,jet}$ and $m_{\rm T,jet}$ density (ρ,ρ_m) based on median value estimation
- > Reconstructed $p_{T,jet}$ and M_{jet} ($p_{T,jet}^{reco}$, M_{jet}^{reco})
 - $p_{\mathrm{T,jet}}^{\mathrm{reco}} = p_{\mathrm{T,jet}}^{\mathrm{raw}}$ $(p_{\mathrm{T,jet}} \text{ of } p_{\mathrm{bkg,jet}}^{\mu}) = p_{\mathrm{T,jet}}^{\mathrm{raw}} \rho A_{\mathrm{jet}}$
 - $M_{jet}^{reco} = M_{jet}^{raw}$ $(M_{jet} \text{ of } p_{bkg,jet}^{\mu}) = M_{jet}^{raw} M_c$ (?)
- Smearing effect (uncorrelated background effect)

•
$$M_{\rm jet}^{\rm reco} = M_{\rm jet}^{\rm signal} \pm \sigma_{M_{\rm jet}}$$

•
$$p_{\mathrm{T,jet}}^{\mathrm{reco}} = p_{\mathrm{T,jet}}^{\mathrm{signal}} \pm \sigma_{p_{\mathrm{T}}}$$

Uncorrelated background effect

>How do we correct the distorted signal jets?

Unfolding

>How do we correct the distorted signal jets?

- STAR, Phys. Rev. C 96, 024905 (2017)
- > Correction of uncorrelated background effect using RooUnfold package
- \geq Response matrix $R^{\text{bkg}}(p_{\text{T,jet}}^{\text{reco}}, p_{\text{T,jet}}^{\text{signal}}) = R^{\text{bkg}}(p_{\text{T,jet}}^{\text{reco}}, 15 \text{ GeV}/c)$

Closure test for $(p_{T,jet}, M_{jet})$ measurement

- Semi-inclusive jet mass measurement with ME technique
 - Extension of previous $p_{T,jet}$ measurement
 - $p_{\mathrm{T,jet}}$ to ($p_{\mathrm{T,jet}}$, M_{jet}) measurement
- ➤ MC closure test
 - PYTHIA events are embedded to thermal background model and tested

$p_{T,jet}$ closure test result

$p_{T,jet}$ closure test result

*M*_{jet} Closure test result (PYTHIA and SE)

- 1. Signal distribution (PYTHIA) was distorted by bkg
- 2. Distorted PYTHIA was hidden in SE
- 3. SE-ME (subtract bkg in SE)
- 4. (SE-ME) -> Unfolding -> PYTHIA

*M*_{jet} Closure test result (SE and ME)

Same-event (Smeared signal + bkg) M_{jet} (GeV/*c*²) $M_{\rm jet}^{\rm reco}$ (GeV/ c^2) **PYTHIA8**, \sqrt{s} = 200 GeV \oplus thermal background same-event (SE) ME 10^{-2} R=0.4, anti- k_{T} 10 10 $A_{\rm iet} > 0.35, \ |\eta_{\rm iot}| < 0.6$ $9.00 \le p_{T,jet}^{trig} < 30.00 \text{ GeV/}c$ 10⁻³ 10^{-4} 10⁻⁵ 10^{-6} 30 40 10 20 -10 0 -10 $p_{\rm T,jet}^{
m reco}$ (GeV/c)

Mixed-event (bkg)

- 1. Signal distribution (PYTHIA) was distorted by bkg
- 2. Distorted PYTHIA was hidden in SE
- 3. SE-ME (subtract bkg in SE)
- 4. (SE-ME) -> Unfolding -> PYTHIA

*M*_{jet} Closure test result (SE-ME and unfolded)

- 1. Signal distribution (PYTHIA) was distorted by bkg
- 2. Distorted PYTHIA was hidden in SE
- 3. SE-ME ~ Smeared PYTHIA
- 4. (SE-ME) -> Unfolding -> PYTHIA

*M*_{jet} closure test result (PYTHIA vs unfold)

 \succ Fully corrected M_{iet} spectra

Validation of closure within 5%

 \succ Projection into M_{jet} integrate several $p_{T,jet}$ bin

- [0,5] GeV/c (PYTHIA ~ unfold)
- [5,10] GeV/c (PYTHIA ~ unfold)
- [10,30] GeVc (PYTHIA ~ unfold)

*M*_{jet} closure test result (PYTHIA vs unfold)

 \succ Fully corrected M_{iet} spectra

Validation of closure within 5%

 \succ Projection into M_{jet} integrate several $p_{T,jet}$ bin

- [0,5] GeV/c (PYTHIA ~ unfold)
- [5,10] GeV/c (PYTHIA ~ unfold)
- [10,30] GeVc (PYTHIA ~ unfold)

*M*_{jet} closure test result (PYTHIA vs unfold)

 \succ Fully corrected M_{iet} spectra

Validation of closure within 5%

 \succ Projection into M_{jet} integrate several $p_{T,jet}$ bin

- [0,5] GeV/c (PYTHIA ~ unfold)
- [5,10] GeV/c (PYTHIA ~ unfold)
- [10,30] GeVc (PYTHIA ~ unfold)

- > Jet is a useful tool to study QGP and we can access to the parton virtuality evolution in AA by measuring precise jet mass in heavy-ion collisions
- > As a correction of combinatorial background for jet mass measurement, framewrok of semiinclusive measurement as a function of ($p_{T,jet}$, M_{jet}) is developed and tested via PYTHIA embedding
- \succ Both $p_{T,jet}$, M_{jet} closure tests are showing reasonable closure result
- ≻ Next step
 - Apply to the data (200 GeV Au+Au collisions with STAR collaboration)

 \bigcirc

BACK UP

Median density estimation

> Proxy of background jet four-vector $(p_{bkg,jet}^{\mu})$

- Calculated by $p_{\mathrm{T,jet}}$ and $m_{\mathrm{T,jet}}$ density ($ho,
 ho_m$) based on median value estimation
- $p_{\text{bkg,jet}}^{\mu} = \left((\rho_m + \rho) A_E, -\rho A_x, -\rho A_y, -(\rho + \rho_m) A_z \right)$
- $\rho = \text{median}\left\{\frac{p_{\text{T,jet}}}{A_{\text{jet}}}\right\}$
- $\rho_m = \text{median}\{\frac{m_{\text{T,jet}} p_{\text{T,jet}}}{A_{\text{jet}}}\}$
- Jets for density estimation were reconstructed by $k_{\rm T}$ algorithm
- 3-hardest jets were excluded in same-event (SE)

Jet area

➢ Jet Area

- Let g^{μ} is a 4-vector of infinitesimal soft particle (ghost particle) •
- Then the jet area a^{μ} can be defined by
- $a^{\mu}(J) = \int dy d\phi f^{\mu}(g(y, \phi), J)$ (*J* is a set of constituents in particular jet)

• Where
$$f^{\mu}(g,J) = \begin{cases} \frac{g^{\mu}}{g_{T}} & g \in J \\ 0 & g \notin J \end{cases}$$

(where $g_{\rm T}$ is a transverse momentum of ghost particle g) •

Jet mass in *pp* collisions

STAR, Phys. Rev. D 104, 052007 (2021)

