

Studies of Jet Quenching in O+O Collisions at $\sqrt{s_{NN}}$ = 200 GeV by STAR

Sijie Zhang (张思婕) for the STAR Collaboration Shandong University Quark Matter 2025, Frankfurt, Germany

Supported in part by

Jet Quenching in Large Systems

 $^{197}_{79}Au + ^{197}_{79}Au$

Jet quenching: modifications to the energy and substructure of high-energy parton showers in QGP

Jet quenching has been observed with single hadrons, inclusive and semi-inclusive jets in Au+Au collisions.

Sijie Zhang @QM2025

Small Systems(p/d+A): QGP or not QGP?

STAR, PLB 747, 265 (2015) STAR, PLB 743, 333 (2015) STAR, PRC 110, 064902 (2024) $dp_{T}^{jet}d\eta d\phi$ d³N_{jet} 10⁻³ (b) $0.2 < p_{\tau}^{t} < 2.0 \text{ GeV/c}$ 0-10% *d*+Au 4∆b/Nb(₁N/1) 10⁻⁴ 1.12 - $Y^{\text{ridge}} + FY^{pp}(\mathbf{0})$ STAR **10**⁻⁵ Template Fit High-EA Low-EA 0.8 0.7 0.6 1.08⊧ 0.5 0.4 0.69 (c) $0.2 < p_{_{\rm T}}^{\rm t} < 2.0 \; {\rm GeV/c}$ 0.3 0.2 ¢∆b/Nb(,N/1) 0-10% *p*+Au 0.1 0.68 0 15 0.67 0.66 0.65 2 0 3 _1 4 $\Delta \phi$ (rad)

Collectivity in p/d+Au

- Apparent h+jet suppression in high-EA events likely due to EA-Q² anti-correlation
- Collectivity is observed but no clear jet quenching signal in small systems

Sijie Zhang @QM2025

 ${}^{16}_{8}O + {}^{16}_{8}O$

in O+O than p/d+Au

1/N_{trig} * dN/dΔφ 00.9 **(N/dΔb**

less centrality fluctuation

STAR BUR 2020

Opportunities with O+O Collisions

Long-range ridge is observed in central O+O collisions

Theoretical: baseline with no quenching for MB IAA

• Clear collective flow signal. How about jet quenching? • An excellent opportunity to test jet quenching models!

Sijie Zhang @QM2025

Solenoidal Tracker at RHIC (STAR)

Data: 2021 O+O $\sqrt{s_{NN}}$ = 200 GeV

Time Projection Chamber (iTPC)

 $|\eta| < 1.5$

Full azimuthal coverage

Charged particles with $0.2 < p_T < 30$ GeV/c Charged jet reconstruction

Event Plane Detector (EPD)

 $2.1 < |\eta| < 5.1$

Centrality definition

Jet Quenching Observables

- **Inclusive charged hadrons** High p_T charged particles as proxies of parent partons
- **Inclusive** jets Reconstructed jets better represent parent parton kinematics
- Semi-inclusive h+jet High-p_⊤ hadron triggered recoil jets

Y: yield

$$R_{AA} = \frac{Y_{AA}}{\langle N_{coll} \rangle Y_{pp}}$$

$$R_{cp} = \frac{\langle N_{coll} \rangle^{peripheral} Y_{centre}}{\langle N_{coll} \rangle^{central} Y_{peripher}}$$

N_{coll} from Glauber Model

 $\frac{I_{AA}}{Y_{pp}} \qquad I_{cp} = \frac{I_{central}}{Y_{peripheral}}$

Normalized per trigger

Inclusive Charged Hadron Yields and R_{cp}

Fully corrected charged hadron yields at mid-rapidity ($|\eta| < 0.5$) in O+O collisions

 R_{cp} (0-10% / 60-80%) central value < 1 at high p_T , however large uncertainty from N_{coll}

Inclusive Charged Hadron RAA

- $p_T < 2.5$ GeV/c: R_{AA} increases with p_T
- $p_T > 2.5$ GeV/c: R_{AA} decreases slightly
- $R_{AA} \sim 1$ for $p_T > 7$ GeV/c in 0-10% collisions
 - About 15% uncertainty

Jet Reconstruction and Background Removal

 \checkmark Jet reconstruction:

- $|\eta_{jet}| < 1.5 R_{jet}$
- $|\phi_{\rm trig} \phi_{\rm jet} \pi| < \pi/4$ (h+jet)

•
$$p_{T,jet}^{reco,ch} = p_{T,jet}^{raw,ch} - \rho'A$$

• Estimated background energy density:

$$\rho' = \operatorname{median}_{j \in \text{physical jets}} \left\{ \frac{p_{\mathrm{T}j}}{A_j} \right\} \cdot \mathbb{C}.$$

event occupancy C: the area $\sum_{j} A_{j}$ covered by physical jets divided by the total area A_{tot}

CMS, JHEP 08, 130 (2012)

Mixed event: construct combinatorial background

same events (real events)

Raw Jet p_T Spectra

Inclusive jet

Combinatorial jet distribution estimated by event mixing and subtracted from same event distribution lacksquareraw jet p_T spectra = Same Event - f^{ME} * Mixed Event

Semi-inclusive h+jet

f^{ME}: normalization parameter

Sijie Zhang @QM2025

Unfolding

20

Sijie Zhang @QM2025

Rdet **Detector response**

60

by applying detector effects on

 $\times R_{\rm det}(p_{\rm T,jet}^{\rm det,ch}, p_{\rm T,jet}^{\rm part,ch})$ $= R_{\rm bkg}(p_{\rm T,jet}^{\rm reco,ch}, p_{\rm T,jet}^{\rm det,ch})$

Background fluctuations and detector effects are corrected by unfolding

R_{full}

Inclusive Jet Yields and R_{cp}

- Inclusive jets also exhibit R_{cp} central value < 1, particularly for 0-10%/60-80%

Jets extend measurement to high p_T region and provide better access to parton kinematics

R_{cp} of Inclusive Charged Hadron and Jet

Apr 8, 2025

- Inclusive jet R_{cp} and hadron R_{cp} show consistent trends:
 - R_{cp} decreases with increasing p_T and from peripheral to central collisions
- $R_{cp} < 1$ at high p_T for 0-10% centrality, but N_{coll} uncertainty is large.

R_{cp} of Inclusive Charged Hadron and Jet

Apr 8, 2025

Inclusive jet R_{cp} and hadron R_{cp} show consistent trends:

 R_{cp} decreases with increasing p_T and from peripheral to central collisions

 $R_{cp} < 1$ at high p_T for 0-10% centrality, but N_{coll} uncertainty is large.

> Both inclusive jet R_{cp} and hadron R_{cp} suffer from large N_{coll} uncertainty Semi-inclusive h+jet measurement

Sijie Zhang @QM2025

Semi-inclusive h+jet I_{cp}

- $I_{cp} < 1$, suggest yield suppression

• No significant difference between R = 0.2 and 0.5

Similar I_{cp} between O+O and Isobar

I_{cp}: O+O vs. Isobar

Similar I_{cp} between O+O and Isobar

I_{cp}: O+O vs. Isobar

- Yield decreases with increasing N_{part}
- Similar I_{cp} indicates similar relative suppression

Isobar: jet quenching

• **p+Au**: EA-Q² anti-correlation

Further investigations are ongoing, theoretical inputs are welcome

Sijie Zhang @QM2025

VS.

Summary

 \checkmark Hint of jet quenching in O+O collisions

- Charged hadron R_{AA} ~ 1 (about 15% uncertainty) \bullet
- Charged hadron and jet $R_{cp} < 1$ (large N_{coll} uncertainty) \bullet
- Semi-inclusive h+jet |_{cp} < 1 (other effects?) lacksquare

Summary

 \checkmark Hint of jet quenching in O+O collisions

- Charged hadron $R_{AA} \sim 1$ (about 15% uncertainty) lacksquare
- Charged hadron and jet $R_{cp} < 1$ (large N_{coll} uncertainty) \bullet
- Semi-inclusive h+jet l_{cp} < 1 (other effects?)

✓ Outlook:

- pp reference for jet RAA
- h+jet: trigger-side jets to study EA-Q² anti-correlation
- Compare to model calculations
 - x_F dependent effect
 - Nuclear structure
- O+O collisions @ LHC

Backup

• Relative π^0 to γ_{dir} suppression can be reproduced by Color Fluctuation Model with absence of jet quenching

d+Au π^0 to γ_{dir} Suppression

Inclusive Charged Hadron RAA

R_{cp} of Inclusive Charged Hadron and Jet (0-10%/20-40%)

FIG. 12. (Color Online) Ratio between R_{AA} of α -clustered to Woods-Saxon density potential of all charged hadrons (h^{\pm}) in O-O collisions at $\sqrt{s_{\rm NN}} = 7$ TeV. The shaded region shows the statistical errors.

Cold nuclear matter effects also play a role:

• α -cluster vs. Woods-Saxon

Possible Effects

Inclusive hadron and jet:

- Jet quenching: RAA↓, Rcp↓
- nPDF effect: RAA↓ at high pT
- Cronin effect: RAA[↑] at mid pT
- α -cluster structure effect: Ncoll[†], RAA[↓], Rcp[↓]
- Color fluctuation effect: Rcp↓ \bullet
- Fewer hard scatterings in peripheral events: RAA1 at low Npart \bullet

Semi-inclusive h+jet:

- Jet quenching: IAA↓, Icp↓ \bullet
- nPDF effect: IAA↓ at high pT lacksquare
- EA-Q² anti-correlation: Icp↓

Tong Liu, QM22