System Size and Shape Dependence of Anisotropic Flow # Niseem Magdy, for the STAR Collaboration ### **Abstract** In this work, we studied the first three flow harmonics, v_1^{even} , v_2 and v_3 , as a function of mean multiplicity, (Mult), in U+U, Au+Au, Cu+Au, Cu+Cu, d+Au and p+Au collisions at $\sqrt{s_{NN}}$ ~200 GeV. The measurements confirm the impacts of initial geometry (shape and dimensionless size) on the flow harmonics. Such an effect is consistent with the dispersion relation for sound propagation in the hot and dense medium created in these collisions. Our measurements indicate that v_1^{even} and v_3 are system independent and the scaled v_2 shows a common trend for all systems. #### **STAR Detector** Uniform acceptance in $|\eta| < 1$ ### Two particle correlation function $Cr(\Delta \varphi)$ used in this analysis $$Cr(\Delta\varphi) = \frac{dN/d\Delta\varphi(same)}{dN/d\Delta\varphi(mix)}$$ ➤ Non-flow signals, as well as some residual detector effects suppressed with $|\Delta \eta| > 0.7$ cut. For n > 1, $$v_{\mathrm{nn}}(p_T^a, p_T^t) = v_{\mathrm{n}}(p_T^a) \ v_{\mathrm{n}}(p_T^t)$$ For n = 1, $$v_{11}(p_T^a, p_T^t) = v_1^{even}(p_T^a)v_1^{even}(p_T^t) - C p_T^a p_T^t$$ C is the momentum conservation parameter $C \propto \frac{1}{\langle \text{Mult} \rangle \langle p_T^2 \rangle} [4].$ #### **Motivation** - ➤ Is the observed anisotropy in ion—ion collision a final- or initial- state effect? - > STAR collectd data for different systems; U + U ## Final-state ansatz - \triangleright The v_n measurements are sensitive to ε_n , RT and $\left(\frac{\eta}{s}, \frac{\zeta}{s}, \dots\right)$ [1-2]. - > Acoustic ansatz - ✓ Sound attenuation in the viscous matter reduces the magnitude of $v_n[1]$. - > Anisotropic flow attenuation; $$\frac{v_n}{\varepsilon_n} \propto e^{-\beta n^2}, \ \beta \propto \frac{\eta}{s} \frac{1}{RT} + \cdots$$ From macroscopic entropy considerations $(RT)^3 \propto$ $\frac{dN}{d\eta}$ [3]. $$ln\left(\frac{v_n}{\varepsilon_n}\right) \propto a \frac{\eta}{s} \left(\frac{dN}{d\eta}\right)^{\frac{-1}{3}}$$ $$ln(v_n) \propto a \left(\frac{\eta}{s}\right) \left(\frac{dN}{d\eta}\right)^{\frac{-1}{3}} + \ln(\varepsilon_n)$$ Scaling out the system size $\left(\frac{dN}{d\eta}\right)$ and shape (ε_n) should give similar transport coefficient $(\frac{\eta}{\epsilon})$ (i.e. similar v_n) for different systems (final-state effect). The measurements of v_1^{even} , v_2 and v_3 as a function of (Mult) for U+U, Au+Au, Cu+Au, Cu+Cu, d+Au and p+Au collisions at $\sqrt{s_{NN}} \sim 200$ GeV. For the same (Mult) or size, v_1^{even} and v_3 are system independent, while v_2 is system dependent. ## $v_2/\epsilon_2 \ vs < Mult >$ - \triangleright The eccentricity-scaled v_2 as a function of $\langle Mult \rangle^{-1/3}$ for U+U, Au+Au, Cu+Au, Cu+Cu, d+Au and p+Au collisions at $\sqrt{s_{NN}} \sim 200$ GeV. - \triangleright The scaled v_2 shows a common trend for all systems. ### References - [1] arXiv:1305.3341, Roy A. Lacey, A. Taranenko, J. Jia, et al. - [2] PRC84 034908 (2011) P.Staig and E.Shuryak - [3] arXiv:1601.06001, Roy A. Lacey,, et al. - [4] PRC 86, 014907 (2012), ATLAS Collaboration ### Acknowledgment This research is supported by the US DOE under contract DE-FG02-87ER40331.A008. ### Conclusion - \succ The two-particle correlation technique has been used to study v_1^{even} , v_2 and v_3 as a function of (Mult) for U+U, Au+Au, Cu+Au, Cu+Cu, d+Au and p+Au collisions at $\sqrt{s_{NN}} \sim 200$ GeV. - \triangleright At the same size ((Mult)), v_1^{even} and v_3 are system independent, while v_2 is system dependent. - \triangleright The scaled v_2 shows a common trend for all systems.