Beam-Energy and Centrality Dependence of Directed Flow of Identified Particles

Prashanth Shanmuganathan

(for the STAR Collaboration) Kent State University, USA

DATA TO BE PRESENTED $v_1(y)$ and $dv_1/dy|_{y=0}$ presented for

- Au+Au Vs_{NN} : 7.7, 11.5, 14.5, 19.6, 27 & 39 GeV
- 10-40 % collisions and 9 centrality bins
- Particle species: p, anti-p, π^{\pm} , Λ , anti- Λ , K^{\pm} , K^{0}_{S}

Directed flow (v_1)

- v_1 , produced early, gives info about EOS
- Hydro with 1st-order phase transition shows dip in directed flow vs. beam energy due to sudden softening of EOS
- Proton v₁ probes interplay of baryon transport and hydro behavior
- New Λ data offer more insight into transport of baryons

BES Program at STAR and Directed Flow

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0493 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Goals of BES : Explore QCD phase diagram

- Map turn-off of QGP signatures
- Search for Critical Point
- Search for First-Order Phase Transition

Data: Au+Au collisions

√s _{NN} (GeV)	7.7	11.5	14.5	19.6	27	39
Events (10⁶) Minimum-bias	4	12	20	36	70	130

- Rapidity-odd v₁ at AGS energies positive and large for p, Λ - PRL 86, 2533 (2001)
- For 10-40 % centrality, proton dv₁/dy vs.
 beam energy changes sign, with a minimum.
 Net protons change sign twice
- Pion and antiproton slope remain negative.
- EOS softening?

Frankfurt Hybrid Model

- Sign change, minimum and error bars for STAR protons are all invisible with this vertical scale
- All three model cases disagree strongly with experiment

STAR & Particle Identification

 PID using energy loss in TPC dE/dx

• PID using time of flight and momentum from TPC

- Requires TPC & TOF hits
- dE/dx cut of $n\sigma \le 2$
- $p: 0.4 < p_T < 2.0 \text{ GeV/c}$
- $K^{\pm} \& \pi^{\pm}$: $p_{T} > 0.2 \text{ GeV/c}$
- *p* < 1.6 GeV/c

Short lived : $\Lambda \& K^0_s$

- Invariant mass technique
- Mixed-event background
- V0 topological cuts
- TPC and/or ToF hits for daughters
- $0.2 < p_{\rm T} < 5.0 \, {\rm GeV/c}$

Event Plane Estimation

- 1st-order reaction plane estimated using East & West BBC detectors
 - -Coverage: $3.3 < |\eta| < 5.0$
 - –η gap between TPC and BBC reduces non-flow
- BBC event plane resolution improves at lower energies due to strong v₁ signal near beam rapidities aligning with BBC acceptance
- Non-flat BBC Ψ_1 distribution corrected by shifting method

(Voloshin, Poskanzer, Snellings, arXiv: 0809.2949)

			rapidit	/			
0.02	0.02	0.02	0.02	0.02	0.02		
0	0	0	0	0	0		
-0.02	-0.02	-0.02	-0.02	-0.02	-0.02		
0.02 -1	0 0.012 - 1	0 0.012 -1	0 0.0⊉-1	0 0.012 -1	0 0.012 -1	0	1
0	0	0	0	0	0		
-0.02	-0.02	-0.02	-0.02	-0.02	-0.02		
0.02 -1	0 0.012 - 1	0 0.02 -1	0 0.012 -1	0 0.012 -1	0 0.012 -1	0	1
0	0	0	0	0	0		
-0.02	-0.02	-0.02	-0.02	-0.02	-0.02		
0.02 -1	0 0.012 - 1	0 0.02 -1	0 0.0⊉ -1	0 0.02 -1	0 0.0 <u>1</u> 2 -1	0	1
0	0	0	0	0	0		
-0.02	-0.02	-0.02	-0.02	-0.02	-0.02		
0.02 -1	0 0.012 - 1	0 0.012 -1	0 0.02 -1	0 0.012 -1	0 0.012 -1	0	1
0	0	0	0	0	0		
-0.02	-0.02	-0.02	-0.02	-0.02	-0.02		
0.02 -1	0 0.0<u>2</u> -1	0 0.02 -1	0 0.0<u>2</u>-1	0 0.02 -1	0 0.02 -1	0	1
0	0	0	0	0	0		
-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	_	
-1	0 1-1	0 1-1	0 1-1	0 1-1	0 1-1	0	1

v₁ vs. rapidity for 10-40% centrality

10

dv_1/dy vs. Beam Energy for 10-40% centrality

- A linear fit over |y| ≤ 0.8 used to find dv₁/dy for all species & energies
- Λ follows *p* within errors

Published STAR analysis uses linear term in cubic fit, but results are same within errors

dv_1/dy vs. Beam Energy for 10-40% centrality

- A linear fit over |y| ≤ 0.8 used to find dv₁/dy for all species & energies
- Λ follows *p* within errors
- Anti-p and anti-Λ have negative slope for all BES energies

dv_1/dy vs. Beam Energy for 10-40% centrality

- A linear fit over |y| ≤ 0.8 used to find dv₁/dy for all species & energies
- Λ follows *p* within errors
- Anti-p and anti-Λ have negative slope for all BES energies
- Charged pions have negative slope for all BES energies

dv_1/dy vs. Beam Energy for 10-40% centrality

- A linear fit over |y| ≤ 0.8 used to find dv₁/dy for all species & energies
- Λ follows *p* within errors
- Anti-p and anti-Λ have negative slope for all BES energies
- Charged pions have negative slope for all BES energies
- Measurements at 14.5 GeV for all particles follow smooth trend of earlier BES data

dv_1/dy vs. Beam Energy for 10-40% centrality

- Hybrid Model for *p* is off-scale at the top, at all energies
- PHSD (crossover PT) qualitatively similar to hadronic (HSD & UrQMD)
- Model (with/without PT) shows
 - No proton minimum
 - Beam energy of sign change is too high

Thus, conclusion about PT needs further model development

PHSD/HSD: V. P. Konchakovski *et al.* Phys. Rev. C **90,** 014903 (2014).

UrQMD (ver 3.3p2) events are generated with default settings.

S. A. Bass *et al.*, Prog. Part. Nucl. Phys. **41**, 255 (1998); M. Bleicher *et al.*, J. Phys. G **25**, 1859 (1999).

dv_1/dy vs. Beam Energy for 10-40% centrality

- Hybrid Model for *p* is off-scale at the top, at all energies
- PHSD (crossover PT) qualitatively similar to hadronic (HSD & UrQMD)
- Model (with/without PT) shows
 - No proton minimum
 - Beam energy of sign change is too high

Thus, conclusion about PT needs further model development

 UrQMD *p* & Λ deviate strongly below 20 GeV, unlike data

UrQMD (ver 3.3p2) events are generated with default settings.

S. A. Bass *et al.*, Prog. Part. Nucl. Phys. **41**, 255 (1998); M. Bleicher *et al.*, J. Phys. G **25**, 1859 (1999).

dv_1/dy vs. Beam Energy for 10-40% centrality

- Hybrid Model for *p* is off-scale at the top, at all energies
- PHSD (crossover PT) qualitatively similar to hadronic (HSD & UrQMD)
- Model (with/without PT) shows
 - No proton minimum
 - Beam energy of sign change is too high

Thus, conclusion about PT needs further model development

- UrQMD *p* & Λ deviate strongly below 20 GeV, unlike data
- UrQMD anti-*p* & anti-Λ have qualitatively similar trend at higher BES energies

UrQMD (ver 3.3p2) events are generated with default settings.

S. A. Bass *et al.*, Prog. Part. Nucl. Phys. **41**, 255 (1998); M. Bleicher *et al.*, J. Phys. G **25**, 1859 (1999).

*dv*₁/*dy* vs. Beam Energy for 10-40% centrality

- Particles in left panel (p, π⁻, K⁺) have more quarks from stopped initial nucleons than antiparticles in right panel
- K^0_{S} lies mid-way between K^+ and K^-

Net-kaon vs. net-proton

Assume final-state particles have two quark components, one from produced q-qbar pairs, another from stopped baryons

We try to disentangle the two contributions to the slope of directed flow, *F*, via net-*p* and net-*K*:

 $F_{p} = r_{1} F_{\text{anti-}p} + (1 - r_{1}) F_{\text{net-}p}$ $F_{K+} = r_{2} F_{K-} + (1 - r_{2}) F_{\text{net-}K}$ where $r_{1}(y)$ =observed anti-p over pand $r_{2}(y)$ =observed K^{-} over K^{+}

- dv₁/dy|_{y=0} for net-K and net-p are consistent with each other down to ~14.5 GeV, and deviate at lower energies
- dv₁/dy for net-K & net-p are consistent for Vs_{NN} ≥ 14.5 GeV due to quark transport from beam rapidities
- Cause of split between net-*p* & net-*K* dv_1/dy at low $\sqrt{s_{NN}}$ is unclear

dv_1/dy vs. centrality for π^{\pm} , p, Λ

• dv_1/dy for p, Λ strongly depends on centrality

- Minimum in slope vs beam energy is statistically significant only for p at intermediate centrality
- Different centralities may probe different regions of phase diagram --> important for BES-II

Summary

- We present v₁(y) and midrapidity dv₁/dy at 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV in Au+Au collisions for p, anti-p, Λ, anti-Λ, K[±], K⁰, π[±], at 9 centralities
- $dv_1/dy|_{y=0}$ for both p, Λ shows sign change and strongly depends on beam energy and collision centrality
- There are distinct qualitative features in 10-40% centrality dv1/ dy for baryons (sign change & minimum), antibaryons (always negative), mesons (negative & smaller magnitude)
- Net-p & net-K is similar for Vs_{NN} ≥ 14.5 GeV (reflects quark transport?). Below ~14.5 GeV, net-p dv₁/dy changes sign to positive while net-K stays negative
- Models with and without phase transitions don't reproduce notable qualitative features of data (especially p, Λ)

Backup

dv_1/dy vs. centrality for π^{\pm} , p, Λ

• UrQMD tends to follow qualitative trends in centrality for *p* and Λ