Office of Science / U.S. Dept. of Energy

ERADAT (BNL Batch) & the Data Carousel

David Yu, Jérôme Lauret

Brookhaven National Laboratory

ACAT 2010

Outline

- Introduction
- ERADAT (BNL Batch)
- The Data Carousel
- Case studies
 - Data mining at RHIC
 - ESD re-processing at US-Atlas
 - Data Carousel restore of analysis files in Xrootd namespace
- Conclusion

About BNL

Brookhaven National Laboratory

- □ Established in 1947 on Long Island, New York
- A multi-program national laboratory
- Approximately 3,000 scientists, engineers, technicians and support staff and over 4,000 guest researchers annually

RHIC and ATLAS Computing Facility

The facility provides computing services for

- □ the experiments at the Relativistic Heavy Ion Collider (RHIC) at BNL
- the US-based collaborators in the ATLAS experiment at the Large Hadron Collider (LHC) at CERN
- □ RACF is
 - The Tier 0 Facility for RHIC
 - A tier 1 Facility for US-ATLAS

Tape storage & problem statement

Hardware:

- □ 6 Sun/STK SL8500, each can hold ~ 5 PB data, managed by IBM High Performance Storage System (HPSS)
- □ BNL's tape storage holds over 13 PB of data
- Problematic
 - □ Data production in time sequence for submission + different data ⇔ stochastic file saving to tape from data mining workflow
 - □ User may be staging any number of files out of any random tape
 - Reading back by "group" (production series, collision, year, ...)
 - □ May have thousands of reading demands, 24 x7
 - □ HPSS is designed for archiving, not optimized for reading

Workflow + usage pattern = great potential for chaos

Reading files randomly placed back from tape is definitely not so effective latencies

Tape Technology

Tape is sequential access.

□ Reading random files back from tape is definitely not effective

File Access latency

- Tape transport inside the library
- Mounting time
- Tape position seeking time
- □ Rewind and dismounting time
- □ These latency may take at least 140 seconds.
- □ Tape condition, tape marks.

Requested: A, B, C, D E Tape 1: A, C, E Tape 2: B, D

Timeline ...

	Order files by tape access as much as possibly achievable ORNL batch to BNL Batch (RICH data production) Multi-user considerations	2000
	 One user could still bring the (prod) system to a stall Policy driven needed -> Data Carousel (treat by "ground" with share) 	2001
•	 Try optimizing for throughput Biggest request queue first – ERADAT Use Data Carousel for data management (Xrootd file request) 	2005
	Further fairshare considerations	
	 Across users, group shares Multiple-policies 	2007
	Now – more monitoring and controls,	2009

ERADAT (BNL Batch)

- Is a "file retrieving scheduler" for IBM High Performance Storage System (HPSS).
- Is based on Oak Ridge Batch, customized to BNL's requirements and improvements:
 - Dynamic drive usage allocation, supports multiprojects, multi-technologies, and multi-users.
 - Keeps all transaction history for performance reports, and fine tuning the configuration, as well as altering file submission mechanism.
 - Web-based monitoring system.

ERADAT (BNL Batch)

- Dynamic drive usage allocation, supports multi users. Configuration can be altered in real-time
 - □ Reserving N drives for Writing
 - □ Reserving M drives for Reading
 - □ Reserving P drives for user A
 - □ Reserving Q drives for user B
 - □ ...
- Supports multiple hardware technologies
 Each drive-type has it's own drive usage allocation
- Supports multiple groups
 - Each group has it's own drive allocations

- Example
 - 9940B: 4 for Write, 8 for Read (n for user A, m for user B, ..., t for user H)
 - LTO-3: 6 for Write, 12 for Read
 - □ LTO-4: n for Write, m for Read (...)
- Example
 - Group A: 9940B only (n for W, m for R)
 - Group B: 9940B + LTO-3 + LTO-4
 - Group C: LTO-3 + LTO-4

How ERADAT works?

- If the file is still on disk cache, return immediately
- If the tape is locked, return error immediately
- Sort the files by Tape ID and position
- Giving the option of tape selecting
 - □ Process the most high demanded tape first
 - Process the tape based on FIFO (useful for handling of external complex policies)
- Provided "Priority Staging" Process this tape in next available drive

How ERADAT works?

Optimization Options

- Mount tape based on number of files This is recommended when user requests are completely un-organized. Ex: restoring files from archive.
- Process the tape based on FIFO
 Ordering provided by external algorithm
 The processing will be "First in, first serve"
 Ex: Data Carrousel

BRODICHAVEN

The Data Carousel

- An extendable fault tolerant policy driven framework and API
 - □ User make requests, asynchronous restore
 - Server handles the requests and execute restores from HPSS cache to location on behalf of user

"Server"

- □ *Applies policy*: FIFO, user share, group share, mixed, weighted faire queuing
 - P. Jakl et al., CHEP 2009 proceedings Fair-share scheduling algorithm for a tertiary storage system
- □ May consider "files on the same tape" within time interval (Time slicing)
 - Avoids resource starvation single file on a single tape will be satisfied
- \Box Delegate restore to ERADAT \rightarrow call back
- Other features
 - □ Monitors (client command line reporting of progress, possibility to "see" what the server does from command line, Web interface & graphs)
 - □ Ability to retry on errors (all transient errors successfully treated, some are self-repairing, every request leading to HPSS errors can be re-queued N times)

Brookhaven National Laboratory

Office of Science / U.S. Dept. of Energy

How does it perform?

- Using default optimization option RHIC/STAR CRS Job Processing (on demand)
 - □ 18 LTO-3
 - Max 515 files, 189 GB (avg filesize: 376MB) per hour

Statistics based on STAR CRS Jobs 03/02/2009

 Case Study On 03/02/2009, between 9:40 and 10:46 Received 575 requests (involved 15 tapes) Tape #409167, a LTO-3 tape, only mounted 2 times Staged 58 files, 25.5 GB of data. Avg file size: 451 MB Sample:

DATE TIME	E Tape#	# Files
2009-03-02 09:4	0:20 409167	1
2009-03-02 09:4	1:17 409167	1
2009-03-02 09:4	4:17 409167	2
2009-03-02 09:4	5:17 409167	1
2009-03-02 09:4	8:17 409167	3
2009-03-02 09:4	9:17 409167	1
2009-03-02 09:5	0:17 409167	1
2009-03-02 10:4	3:17 409167	2
2009-03-02 10:4	4:17 409167	2
2009-03-02 10:4	6:17 409167	6
2009-03-02 09:4 2009-03-02 09:5 2009-03-02 10:4 2009-03-02 10:4	9:17 409167 0:17 409167 3:17 409167 4:17 409167	1 1 2 2

58 files associated with Tape #409167, arrived in 32 bundles That means average 1.8 files / bundle

Total: 575 requests 58 requests from #409167

Case Study

- All 58 files arrived in 32 bundles (consecutive tape mounts)
- Average 1.8 files / bundle
- If FIFO No optimization, we would have 32 mounts!

How long would it take?

According to HP's webpage

HP StorageWorks LTO-4 Ultrium 1840 Tape Drive - Specifications

Component Specifications							
Specifications	Component	LTO-4 Ultrium 1840	LTO-3 Ultrium 960				
Performance (1 Kb = 1,000 bytes)	Native Data transfer rate	120 MB/s with LTO 4 media	80 MB/s with LTO 3 media				
	Data rate matching range	40-120 MB/s	27-80 MB/s				
	Data access time (from BOT)	62 seconds typical for LTO 4 media	53 seconds typical for LTO 3 media				
	Rewind time from EOT	< 124 seconds for LTO 4 media	< 98 seconds for LTO 3 media				
	Rewind tape speed	7 m/s for (LTO 3 and LTO 2 media)	7 m/s for (LTO 3 and LTO 2 media)				
	Average load time	< 19 seconds (RW)	< 19 seconds (RW)				
	Average unload time	< 19 seconds (RW)	< 19 seconds (RW)				

Case Study

If process with FIFO (without optimization): Ave 1.8 files/mount Tape delivery time: 5 sec Mounting (loading): 19 sec Set position (assume in the middle): 53 / 2 = 26 sec Data transfer: **1.8 x 441 MB / 80 MB/s** = 9.9 sec Rewind tape: 98 / 2 = 49 sec Dismount (Unload) : 19 sec Place the tape back: 5 sec Total: 132.9 seconds / mount

32 mounts = 71 minutes! For 25.5 GB => 6 MB / sec! This is calculated based on theory, actual performance should also factor in the latency caused by tape marks and file size effects

Р	Mount	Locate	R	Rewind	Dism	Р
	ERADAT	The DataCarousel - ACAT 2010, Jaipur / India		17		

Case Study:

ERADAT with optimization: Ave 29 files / tape Tape delivery time: 5 sec Mounting (loading): 19 sec Set position (assume in the middle): 53 / 2 = 26 sec Data transfer: **29** x 441 MB / 80 MB/s = 160 sec Rewind tape: 98 / 2 = 49 sec Dismount (Unload) : 19 sec Place the tape back: 5 sec Total: 283 seconds / mount

58 files => 2 mounts ~ 10 minutes! Average about 46.16 MB / sec!

Statistics based on RHIC STAR CRS Job Processing 03/02/2009

ESD processing at US-Atlas performance

Using default optimization option: US Atlas ESD Reprocessing 10 LTO-3 + 17 LTO-4 drives Max 8284 files, 225 G (avg filesize: 27M) per hour

Statistics based on LHC Atlas ESD Reprocessing 10/03/09

ERADAT & The DataCarousel - ACAT 2010, Jaipur / India

ESD processing at US-Atlas performance

Case Study On 10/3/2009, between 2:03 and 13:21 Received 73706 requests (involved 270 tapes) Tape #500425, a LTO-4 tape, only mounted 3 times Staged 2279 files, 77 GB of data. Avg file size: 34 MB

 2279 files associated with Tape #500425, arrived in 530 bundles. That means average 4.3 files / bundle
 If FIFO – No optimization, we would do 530 mounts

How long would it take?

ESD processing at US-Atlas

Case Study

If process with FIFO (without optimization) Tape delivery time: 5 sec Mounting (loading): 19 sec Set position (assume in the middle): 62 / 2 = 31 sec Data transfer: 4.3 x 34 MB / 120 MB/s = 1.22 sec Rewind tape: 124 / 2 = 62 sec Dismount (Unload) : 19 sec Place the tape back: 5 sec Total: 142.21 seconds / mount

530 mounts = 21 Hours! About 1 MB / sec!

BNL Batch with optimization: Average 760 files / mount Tape delivery time: 5 sec Mounting (loading): 19 sec Set position (assume in the middle): 62 / 2 = 31 sec Data transfer: 759 x 34 MB / 120 MB/s = 215 sec Rewind tape: 124 / 2 = 62 sec Dismount (Unload) : 19 sec

Place the tape back: 5 sec

Total: 356 seconds / mount

3 mounts = 18 minutes! Average about 73 MB / sec!

1 MB/sec \rightarrow 72 MB/sec

Data Carousel performance

- Using user's own optimization option
 - ERADAT set to FIFO no conflicts
 - Carousel handles ordering and sorting by TapeID all tapes expected to be mounted once only
- Statistics based on RHIC/STAR Experiment February 5th 2010
 - 15 LTO-3 drives
 - 7187 files restored over 106 tapes, <size>=628 MB, total 4.4 TB
 - All tapes 1.21 times
 - □ So, why not 1?
 - Competition with other restore HPSS competition for drives may make the low level kick out a tape to satisfy "the other guy's request"
 - HPSS has a mind of his own

Conclusion

- Tap access optimization is crucial random access destroys your efficiency
- BNL has developed tools to optimize access
 - One to two order of magnitude improvements
 - □ ERADAT (BNL Batch) has been developed in the RHIC data processing era
 - It has demonstrated a great performance for RHIC experiment (multi-context)
 - It has now been adopted by LHC/US-Atlas helping with data processing
 - DataCarousel also developed in house @ BNL
 - Out performs default BNL Batch; test bench for testing what would move "down" to batch
 - Best when faireshare in mind
- ... Not the end of the story. In 2009, BNL Batch has been adapted into CCIN2P3 (called TReqS), and had a success story (HEPiX October 2009)
 - From the few month of our experience with TReqS:
 - Better resources usage (less mounting, more reading)
 - Sharing resources between experiments, ability to guarantee a minimum of drives used
 - Quicker file access implies less slow jobs
 - HPSS experts less stressed (shiny hairs, shiny smiles, lovely people)
- Future
 - □ Always better improvements ... always faster ...

Office of Science / U.S. Dept. of Energy

DataCarousel & High demand

Performance drops

1.98 mount / tape

						hpssbat.ref.bnl.go				
					PVR	Tape ID	# of Files	LSM	LSM Status	Status
					Star Raw LTO 3	661880	600	1,8	ONLINE	MOUNTED
					Star Raw LTO 3	661903	630	1,1	ONLINE	MOUNTED
						661900	356	1,1	ONLINE	MOUNTED
tarrdat					hpssbat.rcf.bnl.gov	662082	156	1,10	ONLINE	
PVR	Tape ID	# of Files	LSM	LSM Status	Status	552201	146	1,9	ONLINE	
tar Raw LTO-3	551889	398	1,8	ONLINE	MOUNTED	551092	145	1,1	ONLINE	MOUNTED
tar Raw LTO-3	551890	367	1,1	ONLINE	MOUNTED	552200	.119	1,9	ONLINE	
tar Raw LTO-3	551893	318	1,1	ONLINE	MOUNTED	551894	105	1,9	ONLINE	
tar Raw LTO-3	551892	194	1,1	ONLINE	MOUNTED	551897	89	374	ONLINE	MOUNTED
tar Raw LTO-3	551899	108	1,8	ONLINE	MOUNTED	552084	81	1,10	ONLINE	
tar Raw LTO-3	551897	103	1,1	ONLINE	MOUNTED	552278	80	1,10	ONLINE	
tar Raw LTO-3	551900	100	1,1	ONLINE	MOUNTED	552282	74	1,10	ONLINE	
tar Raw LTO-3	552081	98	1,9	ONLINE	MOUNTED -	552269	71	1,8	ONLINE	
tar Raw LTO-3	551895	71	1,9	ONLINE	MOUNTED -	552271	63	1,8	ONLINE	
tar Raw LTO-3	551898	42	1,8	ONLINE	MOUNTED -	552279	59	1,10	UNLINE	
tar Raw LTO-3	551894	38	1,9	ONLINE		652270	01	1,10	UNLINE	
tar Raw LTO-3	551896	38	1,1	ONLINE	MOUNTED	552272	35	1,10	UNLINE	
tar Raw LTO-3	552082	26	1,10	ONLINE		552268	33	1,9	UNLINE	
ar Naw E10-5	TOTAL:	1899 files (13) tapes	1,10	ONLINE		551896	29	1,1	ONLINE	MOUNTED
	TOTAL.	Toaa mes (To) tapes				551895	27	1,9	ONLINE	MOUNTED
					Star Raw LTO-3	551899	26	1,8	ONLINE	MOUNTED
					Star Raw LTO-3	552262	26	1,10	ONLINE	
					Star Raw LTO-3	552256	22	1,10	ONLINE	
					Star Raw LTO-3	552259	21	1,9	ONLINE	
					Star Raw LTO-3	552258	17	1,8	ONLINE	
					Star Raw LTO-3	552263	12	1,10	ONLINE	
					Star Raw LTO-3	552083	12	1,9	ONLINE	
					Star Raw LTO-3	551900	10	1,1	ONLINE	MOUNTED
ERA	ADAT &	The DataCarousel -	ACAT	⊺ 2010, Jai	O Star Raw LTO-3	552261	7	1,8	ONLINE	
				_0.0, 0ui	Star Raw LTO-3	552265	5	1,11	ONLINE	
					Star Rain LTD-3	552233	5	1 10	ONLINE	

