Recent Highlights from the STAR Cold-QCD Physics Program

Xiaoxuan Chu, for the STAR Collaboration

RHIC & AGS Annual Users' Meeting 2021
June 8-11, 2021
Introduction

<table>
<thead>
<tr>
<th>The goal of the RHIC Cold QCD program</th>
<th>RHIC dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spin composition of the proton</td>
<td>Longitudinally polarized beam</td>
</tr>
<tr>
<td>Multidimensional landscape of proton</td>
<td>Transversely polarized beam</td>
</tr>
<tr>
<td>Initial state in nuclear collisions</td>
<td>Unpolarized beam</td>
</tr>
</tbody>
</table>

The RHIC Cold QCD Plan for 2017 to 2023: A Portal to the EIC

Polarized protons

Integrated polarized proton luminosity [pb⁻²]

Time [weeks in physics]

2012 P = 52%
2013 P = 53%
2015 P = 55%
2009 P = 34%
2012 P = 59%
2006 P = 55%
2011 P = 48%
2009 P = 56%
2005 P = 47%
2003 P = 34%
Longitudinally polarized beam: Gluon polarization
Gluon helicity

Proton spin (Jaffe-Manohar sum rule)

\[S = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_G \]

Gluon helicity distribution: \(\Delta g(x, Q^2) \)

\[\Delta G = \int_0^1 \Delta g(x, Q^2) dx \]

Measurements

\[A_{LL} = \frac{\frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}}{\frac{\Sigma \Delta f_a \otimes \Delta f_b \otimes \hat{\sigma} \hat{a}_{LL}}{\Sigma f_a \otimes f_b \otimes \hat{\sigma}}} \]

How to access \(\Delta G \) at RHIC?

- Midrapidity jet production at RHIC is dominated by \(qg \) and \(gg \) scatterings at low \(x_T \)
- The \(qg \) and \(gg \) scattering cross sections are sensitive to the helicities of the gluon
Evidence of positive ΔG

- Evidence of positive gluon polarization at 0.05 < x < 0.2
- These data are included in NNPDF and DSSV fits: help constrain gluon polarization at intermediate x

\[
\int_{0.05}^{0.2} \Delta g(x, Q^2) \, dx = 0.17 \pm 0.6
\]

at $Q^2=10$ GeV2
Impact of di-jet data

- STAR 2009 pp 200 GeV di-jet data included in global fit:
 - Central value of Δg is slightly revised and uncertainty is reduced by including STAR di-jet data
• Largest 200 GeV longitudinally polarized pp dataset; improved both statistical and systematic uncertainties
• This result can reduce the uncertainty of gluon polarization for $x_T > 0.05$ if included in global fits
Di-jet A_{LL} at 200 GeV

Newly published results!

STAR, PRD 103 (2021) L091103

Two different η topology bins

STAR, PRD 95 (2017) 071103

Di-jets: Much narrower ranges of initial state partonic momentum fraction tested; different topologies enhance sensitivity of the data to selected x;
Inclusive jets and di-jets A_{LL} at 510 GeV

Measurement of jet and di-jet A_{LL} at 510 GeV with 2012 data:

- Higher \sqrt{s} pushes sensitivity to lower x (down to 0.02)
- Consistent results from both energies
- Constrain the shape of Δg

$$|\cos \theta^*| = \tanh (|\eta_1 - \eta_2|)/2$$

We have concluded the collection of longitudinally polarized data (Run 2013 A_{LL} publication in preparation)
Transversely polarized Beam: Proton 3D Structure
Transverse structure of the proton

- Transverse momentum dependent PDFs (TMDs, \(f(x, k_T) \)) → 3D structure of the proton
- Access to two types of TMDs
 - Initial state effect from PDFs → **Sivers function**
 - Final state effect from fragmentation → **Collins function**
- Measurement: Transverse single spin asymmetry (TSSA)

\[
A_N = \frac{d\sigma^\uparrow - d\sigma^\downarrow}{d\sigma^\uparrow + d\sigma^\downarrow}
\]
A_N for Z and W boson

- Sivers effect: the correlation between the transverse momentum of a parton (k_T) and the transverse spin (S_p) of the proton
- TSSA of weak bosons sensitive to Sivers sign-change and TMD evolution effects
- Improved uncertainties using STAR 2017 data

Diagram: Correlation between proton spin and transverse motion of parton

Graph: A_N vs y^{Z^0}

- STAR p+p 500 GeV
- $0.5 < P_T^{Z^0} < 10$ GeV/c
- STAR Preliminary

Data points:
- STAR run 11 (L = 25 pb$^{-1}$)
- STAR prel. run 17 (L = 340 pb$^{-1}$)
- arXiv:2103.03270

beam pol. uncertainty not shown

3.4% (run 11)
1.4% (run 17)
A_N for Z and W boson

- Sivers effect: the correlation between the transverse momentum of a parton (k_T) and the transverse spin (S_p) of the proton
- TSSA of weak bosons sensitive to Sivers sign-change and TMD evolution effects
- Improved uncertainties using STAR 2017 data
A dependence of $\pi^0 A_N$

TSSA for forward ($2.7 < \eta < 3.8$) π^0 in pp, pAl and pAu collisions using 2015 data

- Ratios of average A_N values as a function of $\log A$ in each x_F bin are measured
- Suppression of A_N in pA to A_N in pp collisions is observed
Collins asymmetry indicates the azimuthal asymmetry of a hadron originating from the fragmentation of a transversely polarized quark.

\[\langle S_q \cdot (p \times k_{T,\pi}) \rangle \neq 0 \]

Collins asymmetry is sensitive to transversity and TMD fragmentation.

\[A_{UT}^{\sin(\phi)} \sin(\phi) = \frac{\sigma^\uparrow(\phi) - \sigma^\downarrow(\phi)}{\sigma^\uparrow(\phi) + \sigma^\downarrow(\phi)} \]

\[\phi = \phi^s - \phi^H \]

Collins asymmetry indicates the azimuthal asymmetry of a hadron originating from the fragmentation of a transversely polarized quark.
Collins asymmetry for π^\pm in jets

- Collins asymmetries of π^\pm are measured
- Consistent results from 2012 and 2015 data; improved uncertainties using 2015 data
Collins asymmetry for π^\pm in jets

- Collins asymmetries of π^\pm are measured
- Combined results will help constrain theoretical calculations
Collins asymmetry for π^0 in jets

Newly published results!

Forward π^0: $2.7 < \eta < 4.0$

$$Z_{em} = \frac{E_{\pi^0}}{E_{jet}}$$, EM-jet reconstructed only by photons and electrons

j_T is E_{π^0} projection perpendicular to jet axis

Cancellation of the Collins effect of the u/d quark; weak j_T dependence is observed
Summary

STAR longitudinal program is completed (Run 2013 A_{LL} publication in preparation)

- Di-jet A_{LL}: test the sensitivity of Δg in selected x region
- Higher \sqrt{s} and more forward rapidity: access to smaller x region

Measurements of TSSA using transversely polarized data probe the transverse spin structure of the proton

- A_N for W and Z boson → precise measurement to investigate Sivers effect
- Collins asymmetry for π^\pm and π^0 → transversity of the proton and TMD fragmentation

New released results: A_N of W and Z

Results below, not covered by this talk, will be presented by T. Lin:

<table>
<thead>
<tr>
<th>Scientific goals</th>
<th>Observable</th>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di-jet Sivers effect</td>
<td>Intrinsic k_T of parton</td>
<td>Transversely polarized pp</td>
</tr>
<tr>
<td>Non-linear gluon dynamics in nuclei</td>
<td>Forward di-hadron correlation</td>
<td>Unpolarized pp and pA</td>
</tr>
<tr>
<td>Sea quark distributions</td>
<td>W^+ / W^- cross-section ratio</td>
<td>Unpolarized pp</td>
</tr>
</tbody>
</table>

(see T. Lin’s talk in the next session)