Recent Highlights from the STAR Cold-QCD Physics Program

Xiaoxuan Chu, for the STAR Collaboration

RHIC & AGS Annual Users' Meeting 2021 June 8-11, 2021

Introduction

The goal of the RHIC Cold QCD program	RHIC dataset	
Spin composition of the proton	Longitudinally polarized beam	
Multidimensional landscape of proton	Transversely polarized beam	
Initial state in nuclear collisions	Unpolarized beam	

Polarized protons

Longitudinally polarized beam: Gluon polarization

Gluon helicity

Gluon helicity Proton spin (Jaffe-Manohar sum rule) $S = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_G$

Gluon helicity distribution: $\Delta g(x, Q^2)$

 $\Delta G = \int_0^1 \Delta g(x, Q^2) dx$

How to access ΔG at RHIC?

- Midrapidity jet production at RHIC is dominated by qg and gg scatterings at low x_T
- The qg and gg scattering cross sections are sensitive to the helicities of the gluon

Evidence of positive ΔG

- Evidence of positive gluon polarization at 0.05 < x < 0.2
- These data are included in NNPDF and DSSV fits: help constrain gluon polarization at intermediate x

Impact of di-jet data

- STAR 2009 pp 200 GeV di-jet data included in global fit:
 - STAR, PRD 95 (2017) 071103; STAR, PRD 98 (2018) 032011
- Central value of Δg is slightly revised and uncertainty is reduced by including STAR di-jet data

Inclusive jet A_{LL} at 200 GeV

Newly published results!

STAR, PRD 103 (2021) L091103

- Largest 200 GeV longitudinally polarized pp dataset; improved both statistical and systematic uncertainties
- This result can reduce the uncertainty of gluon polarization for $x_T > 0.05$ if included in global fits

Di-jet A_{LL} at 200 GeV

Di-jets: Much narrower ranges of initial state partonic momentum fraction tested; different topologies enhance sensitivity of the data to selected x;

Inclusive jets and di-jets A_{LL} at 510 GeV

Measurement of jet and di-jet A₁₁ at 510 GeV with 2012 data:

- Higher \sqrt{s} pushes sensitivity to lower x (down to 0.02)
- Consistent results from both energies
- Constrain the shape of Δg $|\cos\theta^{*}| = \tanh(|\eta_{1} - \eta_{2}|)/2$

Four different n topology bins

We have concluded the collection of longitudinally polarized data (Run 2013 A_{II} publication in preparation)

Transversely polarized Beam: Proton 3D Structure

Transverse structure of the proton

- Transverse momentum dependent PDFs (TMDs, f (x , k_T)) \rightarrow 3D structure of the proton
- Access to two types of TMDs
 - Initial state effect from PDFs → Sivers function
 - Final state effect from fragmentation → Collins function
- Measurement: Transverse single spin asymmetry (TSSA)

$$A_N = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

\mathbf{A}_{N} for Z and W boson

NEW

- Sivers effect: the correlation between the transverse momentum of a parton (k_T) and the transverse spin (S_p) of the proton
- TSSA of weak bosons sensitive to Sivers sign-change and TMD evolution effects
- Improved uncertainties using STAR 2017 data

\mathbf{A}_{N} for Z and W boson

- Sivers effect: the correlation between the transverse momentum of a parton (k_T) and the transverse spin (S_p) of the proton
- TSSA of weak bosons sensitive to Sivers sign-change and TMD evolution effects
- Improved uncertainties using STAR 2017 data

A dependence of $\pi^0 A_N$

TSSA for forward (2.7 < η < 3.8) π^0 in pp, pAl and pAu collisions using 2015 data

- Ratios of average A_N values as a function of logA in each x_F bin are measured
- Suppression of A_N in pA to A_N in pp collisions is observed

Collins asymmetry

Collins asymmetry indicates the azimuthal asymmetry of a hadron originating from the fragmentation of a transversely polarized quark

Collins asymmetry for π^{\pm} in jets

- Collins asymmetries of π^{\pm} are measured
- Consistent results from 2012 and 2015 data; improved uncertainties using 2015 data

Collins asymmetry for π^{\pm} in jets

- Collins asymmetries of π^{\pm} are measured
- Combined results will help constrain theoretical calculations

Collins asymmetry for π^0 in jets

Newly published results!

Cancellation of the Collins effect of the u/d quark; weak j_T dependence is observed

Summary

STAR longitudinal program is completed (Run 2013 A_{LL} publication in preparation)

- Di-jet A_{LL} : test the sensitivity of Δg in selected x region
- Higher Vs and more forward rapidity: access to smaller x region

Measurements of TSSA using transversely polarized data probe the transverse spin structure of the proton

- A_N for W and Z boson \rightarrow precise measurement to investigate Sivers effect
- Collins asymmetry for π^{\pm} and $\pi^{0} \rightarrow$ transversity of the proton and TMD fragmentation

Papers published recently: STAR, PRD 103 (2021) L091103; STAR, PRD 103 (2021) 072005; STAR, PRD 103 (2021) 092009 New released results: A_N of W and Z

Scientific goals	Observable	Dataset
Di-jet Sivers effect	Intrinsic k_{τ} of parton	Transversely polarized pp
Non-linear gluon dynamics in nuclei	Forward di-hadron correlation	Unpolarized pp and pA
Sea quark distributions	W^+/W^- cross-section ratio	Unpolarized pp

Results below, not covered by this talk, will be presented by T. Lin:

(see T. Lin's talk in the next session)