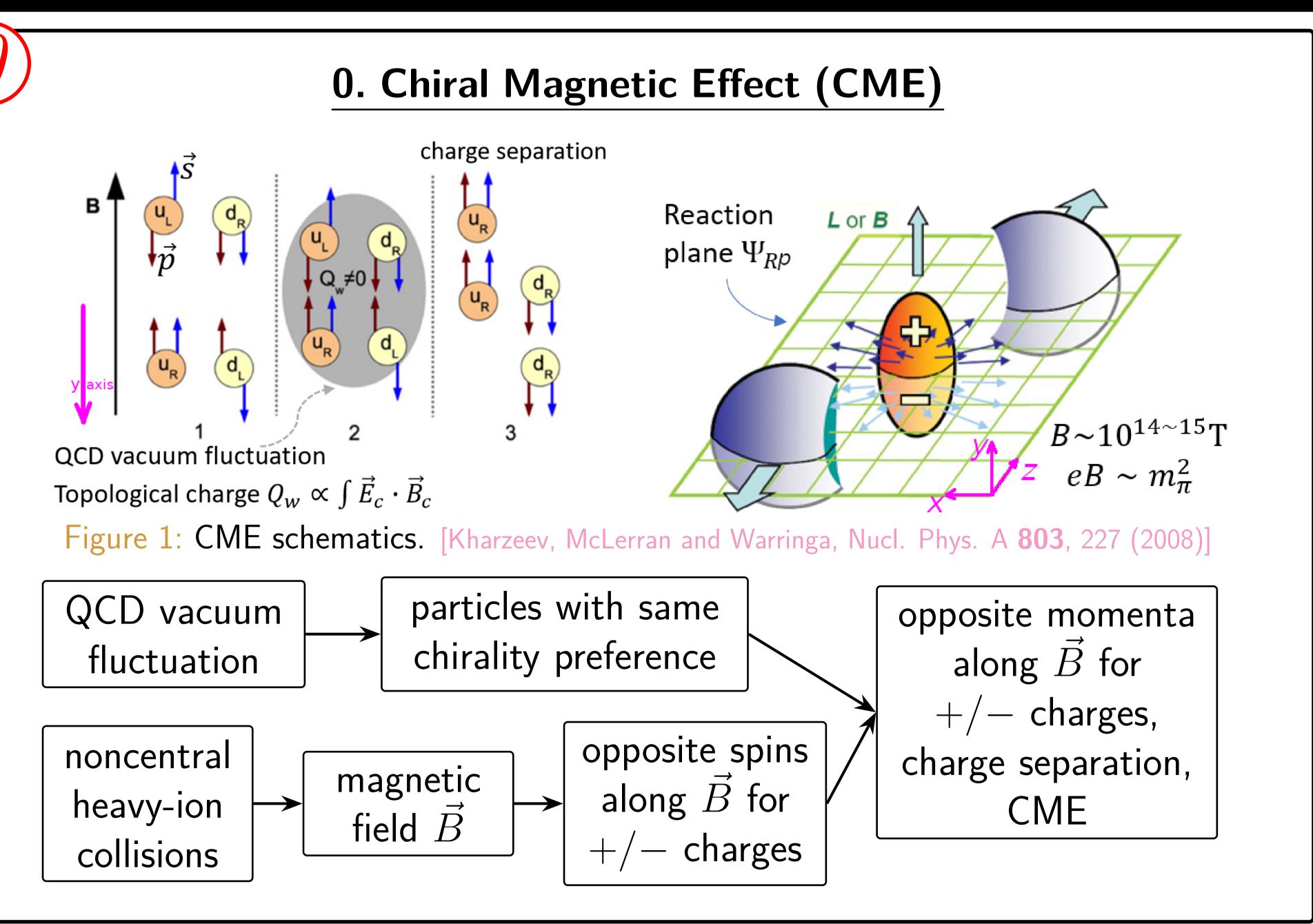
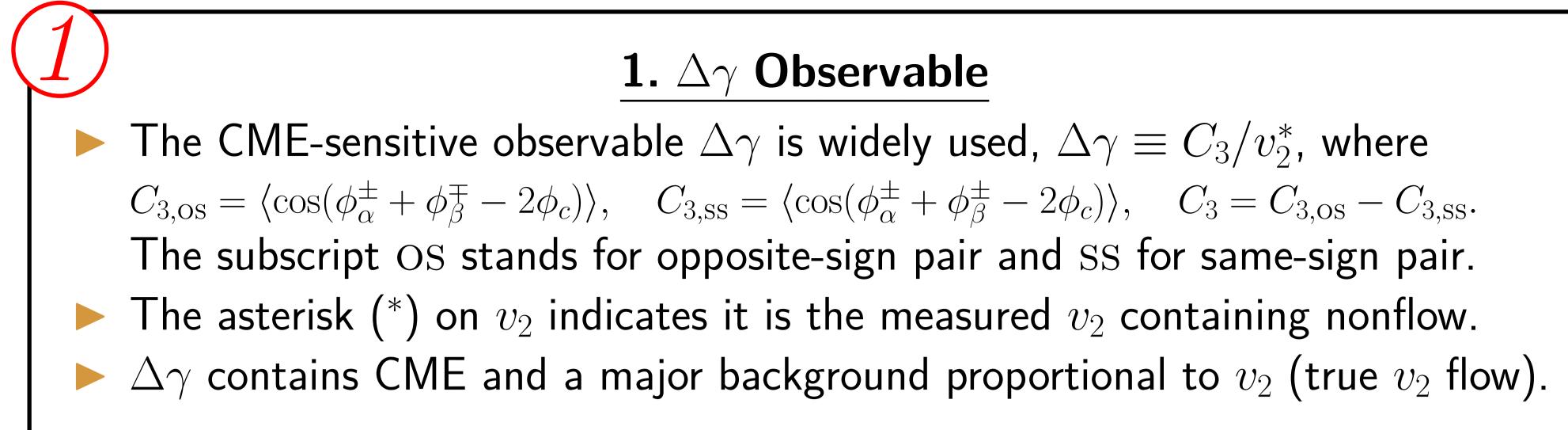
Estimate of nonflow baseline for the chiral magnetic effect in isobar collisions at STAR – a poster for 2022 RHIC/AGS users' meeting Yicheng Feng (for the STAR Collaboration) PURDUE Purdue University June 9, 2022 ΝΙ

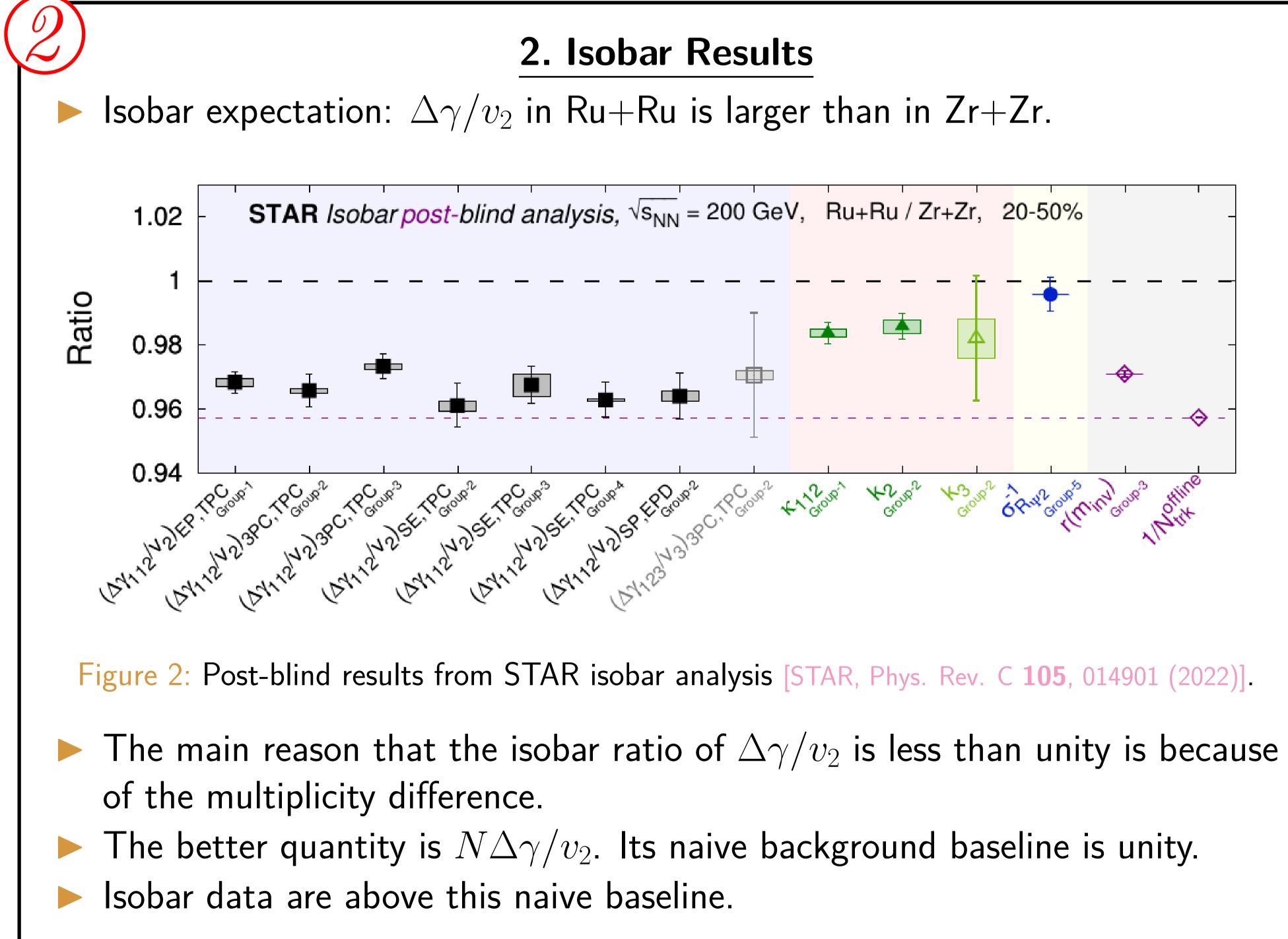

Abstract

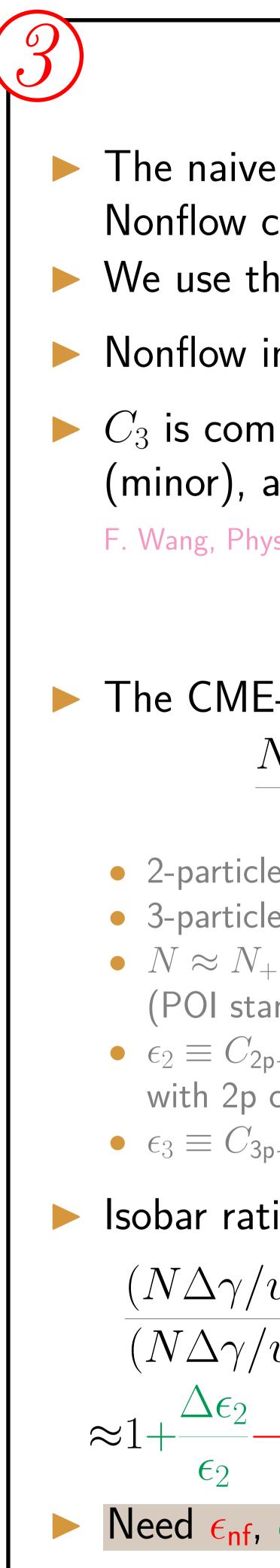
Supported in part by the **U.S. DEPARTMENT OF** ENERGY

Yicheng Feng (for the STAR Collaboration)

We study nonflow contributions in CME observables from isobar collisions and arrive at a new background estimate for CME.


Office of Science





Estimate of nonflow baseline for the chiral magnetic effect in isobar collisions at STAR

1 / 5

Estimate of nonflow baseline for the chiral magnetic effect in isobar collisions at STAR

3. Nonflow Contribution to Isobar Baseline

The naive baseline of unity would be correct if there was no nonflow. Nonflow correlations will cause the baseline to deviate from unity. \blacktriangleright We use the letter " ϵ " to denote the nonflow components.

n
$$v_2^*$$
: $v_2^{*2} = v_2^2 + v_{2,nf}^2$, $\epsilon_{nf} \equiv v_{2,nf}^2 / v_2^2$.

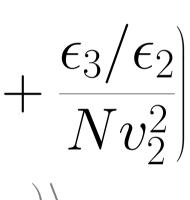
 \triangleright C₃ is composed of flow-induced background (major), 3p nonflow correlations (minor), and possible CME (not written out) [Y. Feng, J. Zhao, H. Li, H. j. Xu and F. Wang, Phys. Rev. C 105, 024913 (2022)]

$$C_{3} = \frac{C_{2p}N_{2p}}{N^{2}}v_{2,2p}v_{2} + \frac{C_{3p}N_{3p}}{2N^{3}} = \frac{v_{2}^{2}\epsilon_{2}}{N} + \frac{\epsilon_{3}}{N^{2}},$$

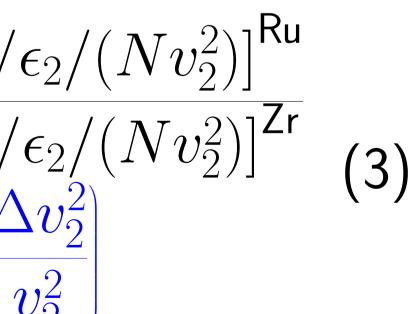
 \blacktriangleright The CME-sensitive observable $\Delta \gamma$ is $\Delta \gamma = C_3/v_2^*$, and then

$$\frac{V\Delta\gamma}{v_2^*} = \frac{NC_3}{v_2^{*2}} = \frac{\epsilon_2}{1+\epsilon_{\mathsf{nf}}} + \frac{\epsilon_3}{Nv_2^2(1+\epsilon_{\mathsf{nf}})} = \frac{\epsilon_2}{1+\epsilon_{\mathsf{nf}}} \left[1 + \epsilon_{\mathsf{nf}}\right]$$

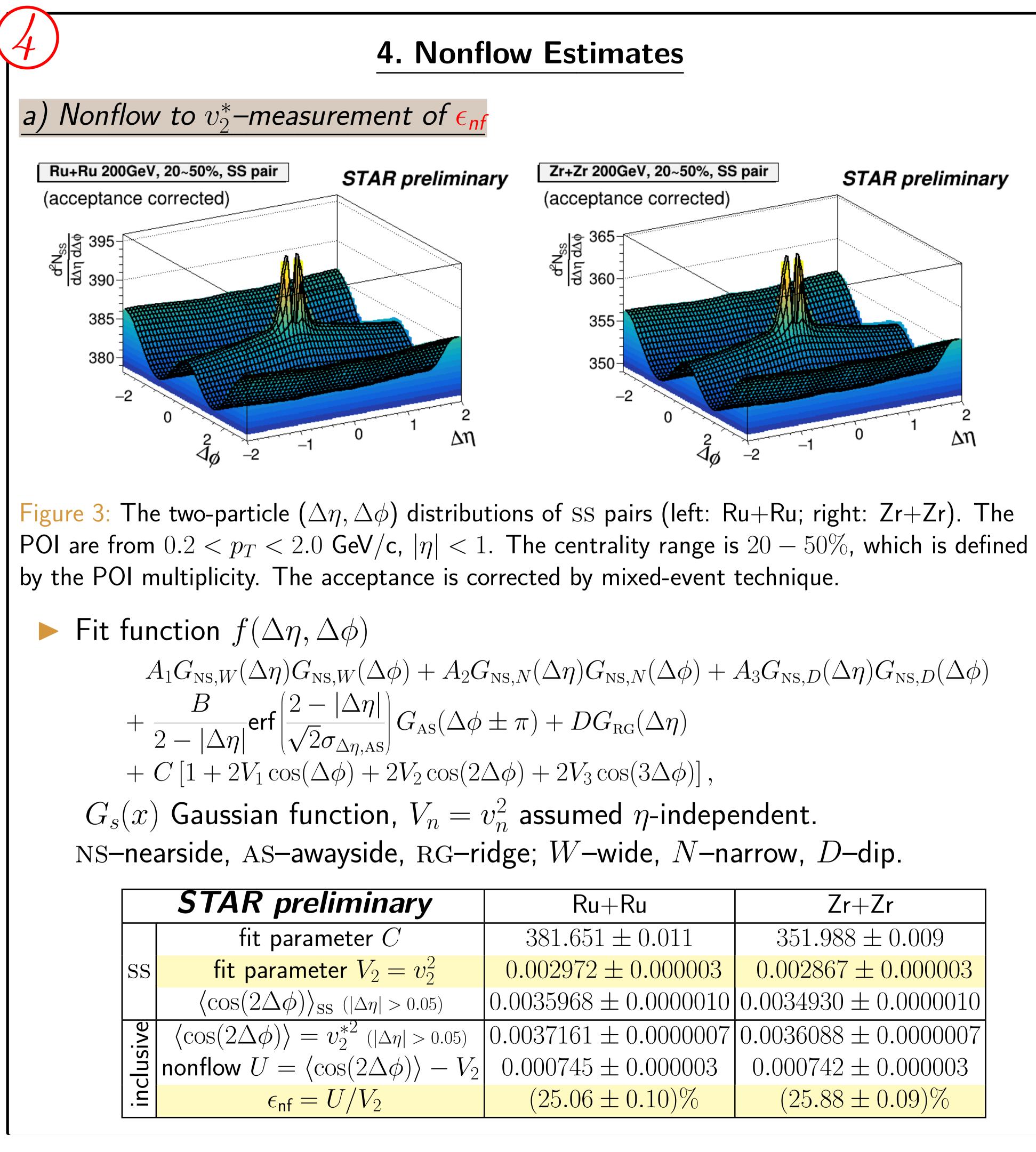
(2p) nonflow (e.g., resonance, ...) $C_{2\mathsf{p}} \equiv \langle \cos(\phi_\alpha + \phi_\beta - 2\phi_\beta) \rangle$


• 3-particle (3p) nonflow (e.g., jets, ...) $C_{3p} \equiv \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_c) \rangle$. • $N \approx N_+ \approx N_-$ is POI multiplicity; $N_{2p,3p}$ is 2p (3p) nonflow pair (triplet) multiplicity.

(POI stands for particle of interest.)


• $\epsilon_2 \equiv C_{2p} N_{2p} v_{2,2p} / (Nv_2)$ is the 2p correlation w.r.t. the 2p cluster azimuth and coupled with 2p cluster elliptic flow.

• $\epsilon_3 \equiv C_{3p}N_{3p}/(2N)$ is the 3p correlation within the correlated triplet.


io: (where notation
$$\Delta X = X^{\mathsf{Ru}} - X^{\mathsf{Zr}}$$
)
 $\frac{v_2^*)^{\mathsf{Ru}}}{v_2^*)^{\mathsf{Zr}}} \equiv \frac{(NC_3/v_2^{*2})^{\mathsf{Ru}}}{(NC_3/v_2^{*2})^{\mathsf{Zr}}} \approx \frac{\epsilon_2^{\mathsf{Ru}}}{\epsilon_2^{\mathsf{Zr}}} \cdot \frac{(1+\epsilon_{\mathsf{nf}})^{\mathsf{Zr}}}{(1+\epsilon_{\mathsf{nf}})^{\mathsf{Ru}}} \cdot \frac{[1+\epsilon_3/\epsilon_3/\epsilon_2/\epsilon_2]}{[1+\epsilon_3/\epsilon_3/\epsilon_2/\epsilon_2]} \cdot \frac{\Delta\epsilon_3}{\epsilon_3} - \frac{\Delta\epsilon_2}{\epsilon_2} - \frac{\Delta N}{N} - \frac{\Delta\epsilon_3}{\epsilon_3} + \frac{\epsilon_3/\epsilon_2/(Nv_2^2)}{(N-v_2^2)} \cdot \frac{\Delta\epsilon_3}{\epsilon_3} - \frac{\Delta\epsilon_2}{\epsilon_2} - \frac{\Delta N}{N} - \frac{\Delta\epsilon_3}{\epsilon_3} + \frac{\epsilon_3/\epsilon_2/(Nv_2^2)}{N} \cdot \frac{\epsilon_3}{\epsilon_3} + \frac{\epsilon_3/\epsilon_2/(Nv_2^2)}{N} \cdot \frac{\Delta\epsilon_3}{\epsilon_3} + \frac{\epsilon_3/\epsilon_2}{\epsilon_2} - \frac{\Delta N}{N} - \frac{\Delta\epsilon_3}{\epsilon_3} + \frac{\epsilon_3/\epsilon_2/(Nv_2^2)}{\epsilon_3} \cdot \frac{\Delta\epsilon_3}{\epsilon_3} + \frac{\epsilon_3/\epsilon_2}{\epsilon_2} - \frac{\Delta\epsilon_3}{\epsilon_3} + \frac{\epsilon_3/\epsilon_2}{N} \cdot \frac{\epsilon_3}{\epsilon_3} + \frac{\epsilon_3/\epsilon_2}{\epsilon_3} + \frac{\epsilon_3/\epsilon_3}{\epsilon_3} + \frac{\epsilon_3/\epsilon_2}{\epsilon_3} + \frac{\epsilon_3/\epsilon_2}{\epsilon_3} + \frac{\epsilon_3/\epsilon_2}{\epsilon_3} + \frac{\epsilon_3/\epsilon_2}{\epsilon_3} + \frac{\epsilon_3/\epsilon_3}{\epsilon_3} + \frac{\epsilon_3/\epsilon_3}{\epsilon_3} + \frac{\epsilon_3/\epsilon_3}{\epsilon_3} + \frac{\epsilon_3/\epsilon_3}{\epsilon_3$

$$_{NN}(\Delta\phi) + A_3 G_{NS,D}(\Delta\eta) G_{NS,D}(\Delta\phi)$$

 $_{G}(\Delta\eta)$

Ru	Zr+Zr
E 0.011	351.988 ± 0.009
: 0.000003	0.002867 ± 0.000003
0.0000010	0.0034930 ± 0.0000010
0.0000007	0.0036088 ± 0.0000007
0.000003	0.000742 ± 0.000003
0.10)%	$(25.88 \pm 0.09)\%$

If the near
$$(v_2^2)^{\text{Ru}} = (v_2)^{\text{Ru}} = (v_2)^{\text{Ru}}$$
 = (v_2)^{\text{Ru}} = (v_2)^{\text{Ru}} = (v_2)^{\frac{2}{2}} = 0
*b) Estimate of e*₂ can be CME) [STV
*e*₂ = $\frac{N\Delta\gamma}{v_2}$
AMPT sin
However, precisely resuming $\Delta \epsilon_2 / \epsilon_2 = 0$
AMPT sin
However, precisely resuming $\Delta \epsilon_2 / \epsilon_2 = 0$
We use H $\epsilon_3 \approx (1.84)$ $\Delta \epsilon_3 / \epsilon_3 = 0$
We assuming $\Delta \epsilon_3 / \epsilon_3 = 0$
We assume Δ by statistice
HIJING w $\epsilon_3 = (2.24)$ the defaul systematice

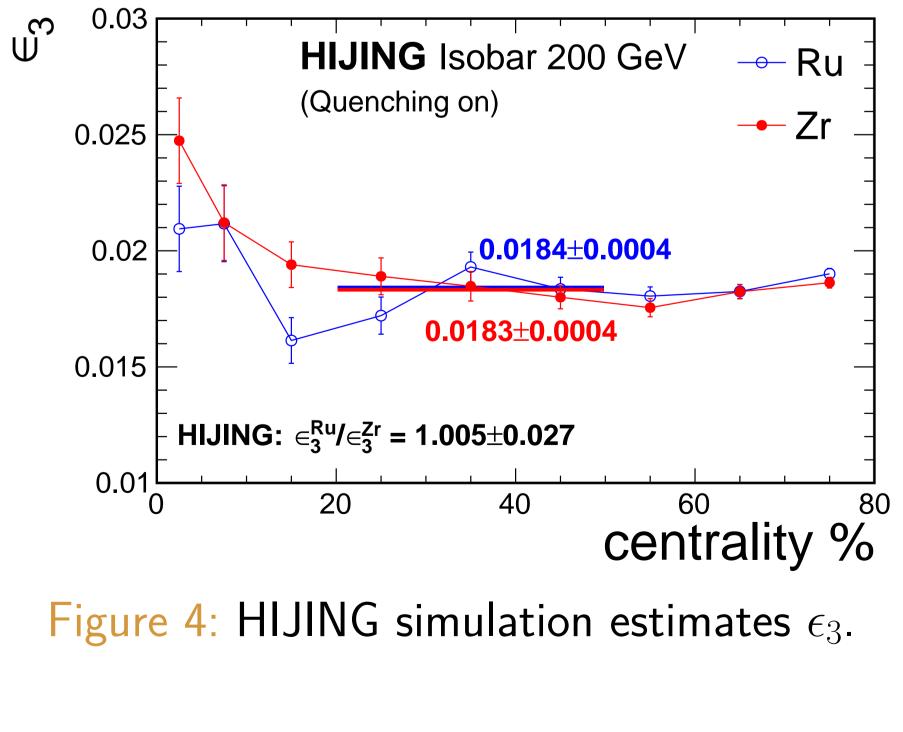
rside wide Gaussian (A_1 term) is counted into "true" flow, 0.003489, $(v_2^2)^{\sf Zr} = 0.003381$, $\epsilon_{\sf nf}^{\sf Ru} = 6.50\%$, $\epsilon_{\sf nf}^{\sf Zr} = 6.73\%$. is difference from the default is counted as systematic uncertainty. $-0.82 \pm 0.13 \mp 0.30)\%$, $-\Delta \epsilon_{nf}/(1 + \epsilon_{nf}) = (0.65 \pm 0.11 \pm 0.22)\%$. $=\Delta V_2/V_2 = (3.7 \pm 0.1 \mp 0.3)\%.$

$f \Delta \epsilon_2 / \epsilon_2$

obtained from ZDC measurement (no nonflow, assuming negligible AR, Phys. Rev. C **105**, 014901 (2022)

 $\frac{\{\text{ZDC}\}}{\{\text{ZDC}\}} \approx 0.57 \pm 0.04 \pm 0.02$ (tracking efficiency ~ 80%) and $(2.3 \pm 9.2)\%$. The $\Delta \epsilon_2$ precision is too poor.

mulation w.r.t. reaction plane gives $\Delta \epsilon_2 / \epsilon_2 \approx (3.5 \pm 1.4)\%$. the pair multiplicity difference $r \equiv (N_{\rm OS} - N_{\rm SS})/N_{\rm OS}$ is relatively measured [STAR, Phys. Rev. C 105, 014901 (2022)].


$$C_{2p}^{\text{Ru}} = C_{2p}^{\text{Zr}}$$
, then $\epsilon_2 \propto Nr$, and

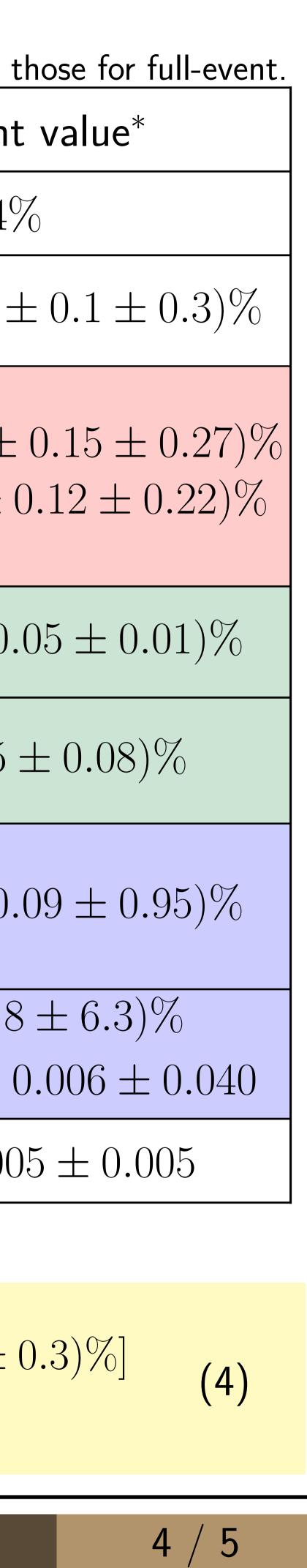
$$\Delta r/r + \Delta N/N = (-2.95 \pm 0.08)\% + 4.4\% = (1.4\%)$$

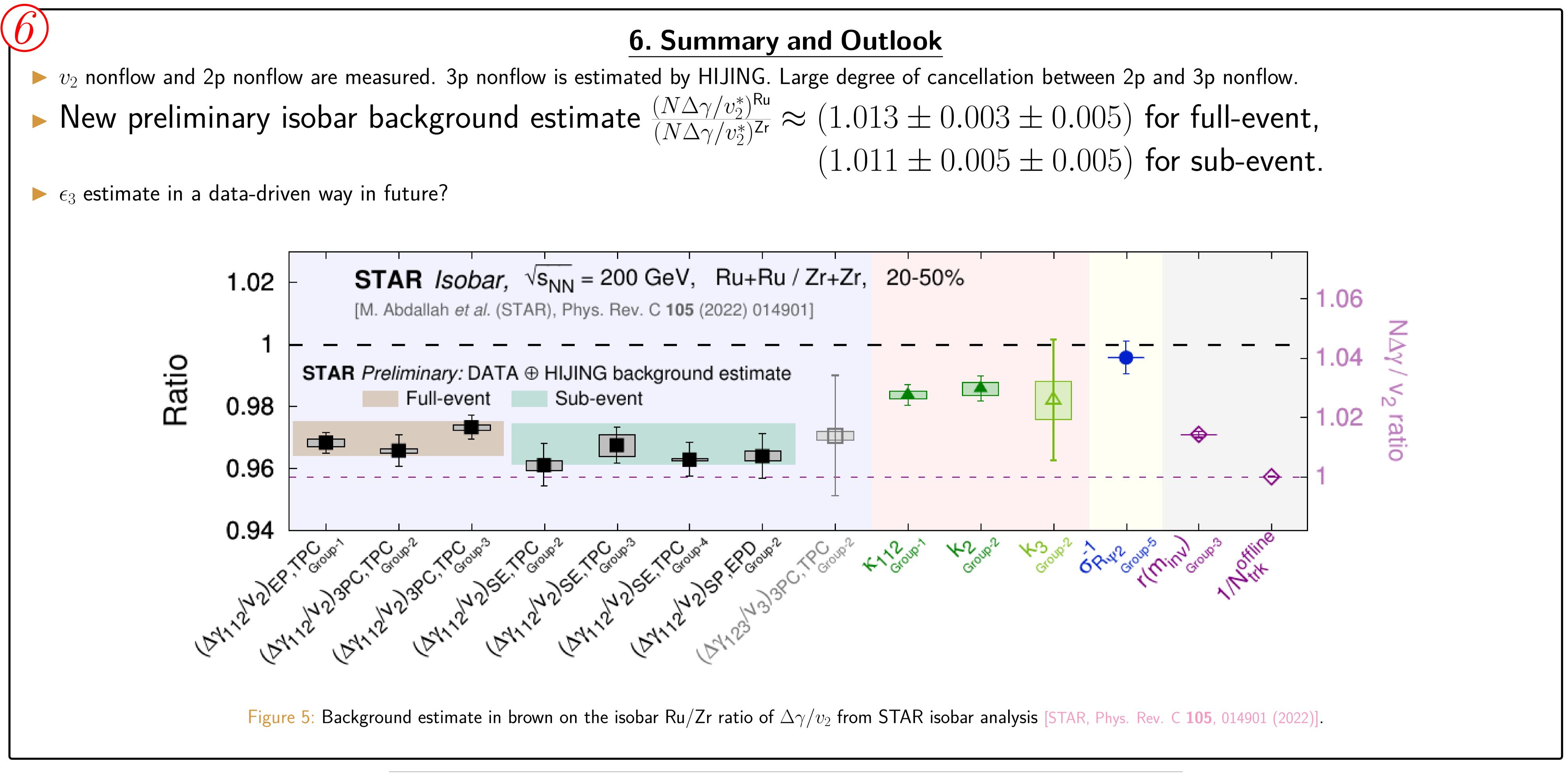
IJING simulation to obtain $4 \pm 0.04)\%$, and $(0.5 \pm 2.7)\%$ 10^8 events for each isobar). 100ty for ϵ_3 ($\pm 0.92\%$), and ϵ_3/ϵ_3 is presently dominated

ICS.

vithout jet quenching gives $1 \pm 0.05)\%$, differing from It by 22%, suggesting 50%cs a safe guesstimate.

Estimate of nonflow baseline for the chiral magnetic effect in isobar collisions at STAR


 $.45 \pm 0.08)\%$.


3 / 5

5		5. Estimated	Background Level For Isoba	ar $N \Delta \gamma / v_2$ Ratio		
* Except this column, all numbers on this poster refer to th						
Quantity		Method	Systematic uncertainty	Full-event value	Sub-event	
Multiplicity $\Delta N/N$	Measured		Negligible	4.4%	4.4%	
Flow $\Delta v_2^2/v_2^2$	Measured	Nonflow subtracted as per below	From nonflow syst.	$\Delta v_2^2 / v_2^2 = (3.7 \pm 0.1 \pm 0.3)\%$	$\Delta v_2^2 / v_2^2 = (3.7 \pm$	
v_2 nonflow	Measured	$(\Delta\eta,\Delta\phi)$ correlations, experimentally measured		$-\Delta \epsilon_{nf} = (0.82 \pm 0.13 \pm 0.30)\%$ $\frac{-\Delta \epsilon_{nf}}{1+\epsilon_{nf}} = (0.65 \pm 0.11 \pm 0.22)\%$	N N	
v_2 -induced bkgd: $\epsilon_2 = N \Delta \gamma / v_2$	Measured	Measured by ZDC (assume negligible CME)	Small	$\epsilon_2 = (0.57 \pm 0.04 \pm 0.02)\%$	$\epsilon_2 = (0.79 \pm 0.0)$	
v_2 -induced bkgd difference:	Messured	$r = (N_{ca} - N_{ca})/N_{ca}$	Negligihle	$\frac{\Delta\epsilon_2}{\epsilon_2} = (1.45 \pm 0.08)\%$	$\frac{\Delta\epsilon_2}{\epsilon_2} = (1.45 \pm$	
3p contribution to C_3 : $\epsilon_3 = C_{3p}N_{3p}/(2N)$	Model estimate	HIJING simulations quenching-on	Quenching-on and off difference $\sim 20\%$. Take $\pm 50\%$ as syst. uncertainty	$\epsilon_3 = (1.84 \pm 0.04 \pm 0.92)\%$	$\epsilon_3 = (1.91 \pm 0.0)$	
3p contribution difference: $\Delta \epsilon_3/\epsilon_3$	Model estimate	HIJING simulation quenching-on	Assumed negligible relative to the large stat. uncertainty	$\frac{\Delta \epsilon_3}{\epsilon_3} = (0.5 \pm 2.7)\%$ $\frac{\epsilon_3/\epsilon_2}{Nv_2^2} = 0.104 \pm 0.008 \pm 0.053$	$\frac{\Delta\epsilon_3}{\epsilon_3} = (-1.8)$ $\frac{\epsilon_3/\epsilon_2}{Nv_2^2} = 0.079 \pm 0$	
background estimate				$1.013 \pm 0.003 \pm 0.005$	1.011 ± 0.005	
The numerical value of Eq. 3 (for full-event method as example) can thus be estimated as follows:						
$\frac{(N\Delta\gamma/v_2^*)^{Ru}}{(N\Delta\gamma/v_2^*)^{Zr}} \approx 1 + (1.45 \pm 0.08)\% + (0.65 \pm 0.11 \pm 0.22)\% + (0.094 \pm 0.007 \pm 0.048)[(0.5 \pm 2.7)\% - (1.45 \pm 0.08)\% - 4.4\% - (3.7 \pm 0.1 \pm 0.22)\% + (1.45 \pm 0.08)\% + (0.65 \pm 0.11 \pm 0.22)\% - (0.85 \pm 0.26 \pm 0.44)\% = 1.013 \pm 0.003 \pm 0.005$						

$$\pm 2.7)\% - (1.45 \pm 0.08)\% - 4.4\% - (3.7 \pm 0.1 \pm 0.003 \pm 0.005)\%$$

Estimate of nonflow baseline for the chiral magnetic effect in isobar collisions at STAR

The STAR Collaboration,

https://drupal.star.bnl.gov/STAR/presentations

Estimate of nonflow baseline for the chiral magnetic effect in isobar collisions at STAR

