

Recent Hypernuclei Measurements from BES Program

Xiujun Li University of Science and Technology of China

RHIC & AGS Users' Meeting 2022

Supported in part by the

Outline

- Introduction
- Review of hypernuclei study in BES-I
- Recent progress of hypernuclei study
 - Hypernuclei internal structure
 - Hypernuclei branching ratios, lifetimes, Λ binding energies
 - Hypernuclei production in heavy-ion collisions
 - Hypernuclei yields, collectivity
- Summary

Introduction - Hypernuclei

Hypernuclei: bound nuclear systems of non-strange and strange baryons

- Probe hyperon-nucleon(Y-N) interaction lacksquare
 - Strangeness in high density nuclear matter \bullet
 - EoS of neutron star \bullet
- Experimentally, we can make measurements related to: \bullet
 - 1. Internal structure
 - Lifetime, binding energy, branching ratios etc. lacksquare

Understanding hypernuclei structure may give more constraints on the Y-N interaction

- 2. Production in heavy-ion collisions
 - Spectra, collectivity etc. \bullet

The formation of loosely bound states in violent heavy-ion collisions is not well understood

2022/6/7

 $^{3}_{\Lambda}$ H

STAR and BES-II

- Collider mode: $\sqrt{s_{NN}} = 7.7 19.6 \text{ GeV}$

• Fixed Target (FXT) mode: extends collision energy down to $\sqrt{s_{NN}}$ = 3.0 GeV

Hypernuclei and STAR BES-II datasets:

• Hypernuclei measurements are scarce in heavy-ion collisions experiments

- At lower beam energies, the hypernuclei production is expected to be enhanced due to high baryon density
- 2. Datasets of large statistics produced in BES-II
- \rightarrow STAR BES-II gives a great opportunity to study hypernuclei production

Year	√ <i>s_{NN}</i> [GeV]	Events
2018	27	555 M
	<u>3.0</u>	258 M
	<u>7.2</u>	155 M
2019	19.6	478 M
	14.6	324 M
	<u>3.9</u>	53 M
	<u>3.2</u>	201 M
	<u>7.7</u>	51 M
2020	11.5	235 M
	<u>7.7</u>	113 M
	<u>4.5</u>	108 M
	<u>6.2</u>	118 M
	<u>5.2</u>	103 M
	<u>3.9</u>	117 M
	<u>3.5</u>	116 M
	9.2	162 M
	<u>7.2</u>	317 M
2021	7.7	101 M
	<u>3.0</u>	2103 M
	<u>9.2</u>	54 M
	<u>11.5</u>	52 M
	<u>13.7</u>	51 M
	17.3	256 M
	<u>7.2</u>	89 M

5

Hypernuclei analysis in STAR BES-I

- STAR collaboration found the anti-hyper triton. Science 328, 58 (2010) (STAR)
- Lifetime measurement of ${}^3_{\Lambda}$ H Science 328, 58 (2010) (STAR) PRC 97, 054909 (2018) (STAR)

Measurement of mass difference and binding energy of ${}^3_{\Lambda}H$ and ${}^3_{\overline{\Lambda}}\overline{H}$ Nature Phys. 16 (2020) 409 (STAR)

Hypernuclei reconstruction

${}_{\Lambda}^{3}$ H, ${}_{\Lambda}^{4}$ H and ${}_{\Lambda}^{4}$ He lifetimes

2022/6/7

$^{3}_{\Lambda}$ H: $\tau = 221 \pm 15$ (stat.) ± 19 (syst.)[ps] $^{4}_{\Lambda}$ H: $\tau = 218 \pm 6(\text{stat.}) \pm 13(\text{syst.})[\text{ps}]$ ⁴_AHe: $\tau = 229 \pm 23(\text{stat.}) \pm 20(\text{syst.})[\text{ps}]$

- Lifetime of light hypernuclei ${}^3_{\Lambda}$ H, ${}^4_{\Lambda}$ H and ${}^4_{\Lambda}$ He are shorter than that of free Λ (with 1.8 σ , 3.0 σ , 1.1 σ respectively)
- Consistent with former measurements (within 2.5 σ for ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H)
- τ_{3H} result consistent with calculation including pion FSI (2019) and calculation under Λd 2-body picture (1992) within 1 σ

$^{3}_{\Lambda}$ H, $^{4}_{\Lambda}$ H results with improved precision

 \rightarrow Provide tighter constraints on models.

dependence of Say dependence of Sa and AR of AH and AHE ਵਿ

- Λ binding energies(B_{Λ}) of ${}^{4}_{\Lambda}H$ and ${}^{4}_{\Lambda}He$ and their differences ΔB_{Λ}
 - For ground states, $\Delta B^4_{\Lambda}(0^+) = B_{\Lambda}(^4_{\Lambda}He, 0^+) B_{\Lambda}(^4_{\Lambda}H, 0^+)$
 - For excited states, the results are obtained from the γ -ray transition energies E_{γ}

$$\begin{split} &B_{\Lambda}^{4}({}^{4}_{\Lambda}\text{He}/\text{H},1^{+}) = B_{\Lambda}({}^{4}_{\Lambda}\text{He}/\text{H},0^{+}) - E_{\gamma}({}^{4}_{\Lambda}\text{He}/\text{H}) \\ &\Delta B_{\Lambda}^{4}(1^{+}) = B_{\Lambda}({}^{4}_{\Lambda}\text{He},1^{+}) - B_{\Lambda}({}^{4}_{\Lambda}\text{H},1^{+}) \end{split}$$

- Λ binding-energy difference
- \rightarrow Study charge symmetry breaking (CSB) effect in A = 4 hypernuclei
- Differences are comparable large values and lacksquarehave opposite sign in 0^+ and 1^+ states
 - Consistent with the calculation including a CSB effect within uncertainties.

Hypernucleigproduction at 3 GeV

• Transport model (JAM) with coalescence reproduces trends of $^{4}_{\Lambda}$ H rapidity distributions seen in data

2022/6/7

Different trends in the $^{4}_{\Lambda}$ H rapidity distribution in central (0-10%) and mid-central (10-50%) collisions

Comparison to Λ and light nuclei at 3 GeV

Aswini K Sahoo (4/7 T14-I) See poster by: Yingjie Zhou (4/8 T11_2)

dict approx. exponential

ential fit to (Λ , ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$)

- Non-mononic behavior in light-tohyper-nuclei ratio vs A observed
 - Thermal model calculations including excited ${}^{4}_{\Lambda}$ H* feeddown shows a similar trend

Energy dependence of hypernuclei production in heavy-ion collisions

2022/6/7

S_3 and S_4

- S_A : relative suppression of hypernuclei production compared to light nuclei production S_A
 - Expect ~1 if no suppression naively
 - $S_3 < 1 \rightarrow$ relative suppression of ${}^3_{\Lambda}H$ to 3He
 - $S_4 > S_3 \rightarrow$ enhanced ${}^4_{\Lambda}H$ production due to feed-down from excited state

2022/6/7

- ···· Coal. (Default AMPT)

- No clear centrality dependence
- Hint of an increasing trend from $\sqrt{s_{NN}} = 3.0$ GeV to 2.76 TeV
- None of the models describe the S_3 data quantitatively

STAR, Science 328 (2010) 58 ALICE, PLB 754 (2016) 360 E864, PRC 70 (2004) 024902 NA49, J.Phys.Conf.Ser.110(2008)032010

- A. Andronic et al, PLB 697 (2011) 203 (Thermal model)
- J. Steinheimer et al, PLB 714 (2021) (H. URQMD, Coal.(DCM))

S. Zhang PLB 684(2010)224 (Coal.+AMPT)

$^{3}_{\Lambda}H$ and $^{4}_{\Lambda}H$ directed flow at 3 GeV

- First measurements of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H directed flow (v₁) from 5 40% centrality
- v_1 slopes of ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$ seem to follow a mass number scaling.

 \rightarrow Imply coalescence is a dominant process for hypernuclei formation in heavy-ion collisions

Summary

- STAR BES-II provides a unique opportunity to study hypernuclei, especially at high-baryon-density region
 - ${}_{\Lambda}^{3}H$, ${}_{\Lambda}^{4}H$ lifetimes measured with improved precision
 - Relative branching ratio R_3 of ${}^3_{\Lambda}H$ with improved precision
 - Precision lifetime and R_3 provide stronger constraints on hyper nuclear interaction models • Λ binding-energy difference between ${}^4_{\Lambda}H$ and ${}^4_{\Lambda}He$
 - Hint of CSB effect at A=4
 - First measurement of ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$ collectivity v_1
 - Mass number scaling is observed for the light hypernuclei \rightarrow qualitatively consistent with coalescence • First measurement of ${}^3_{\Lambda}$ H and ${}^4_{\Lambda}$ H dN/dy vs y in heavy-ion collisions.
 - Provide first constraints to hypernuclei production models @ high $\mu_{\rm B}$
 - Outlook: 1. iTPC and eToF fully installed in 2019 \rightarrow improve η acceptance and PID at large η
 - 2. 2 billion events collected at 3 GeV in 2021 \rightarrow larger statistics, higher precision
 - Expect precision measurements and more information of hypernuclei production with wider η range

Back up

$$f_{Data} = p$$

Xiujun Li, AUM2022

18

Lifetime

- Lifetime τ extracted via N(t) = N₀e^{-L/ $\beta\gamma c\tau$}
- Λ lifetime cross check : 267±4 ps, consistent with PDG value (263±2 ps)
- ${}_{\Lambda}^{3}H$ and ${}_{\Lambda}^{4}H$ lifetimes from 3.0 GeV consistent with 7.2 GeV results

2022/6/7

- The background are obtained by rotating ⁴He or ³He track by 180 degrees
- The signal and the background are fitted by a Gaussian distribution and a double-exponential function, respectively.

 $m(^{4}_{\Lambda}\text{H}) = 3922.38 \pm 0.06 \text{(stat.)} \pm 0.14 \text{(syst.)} \text{ MeV}/c^{2}$ $m(\bar{}^{4}_{\Lambda}\text{He}) = 3921.69 \pm 0.13(\text{stat.}) \pm 0.12(\text{syst.}) \text{ MeV}/c^{2}$

• Λ binding energy : $B_{\Lambda} = (M_{\Lambda} + M_{\text{core}} - M_{\text{hypernucleus}})c^2$

Observation of ⁴₋H

- First observation of $\frac{4}{\Lambda}\overline{H}$ with ~5 σ significance
 - First observation of heaviest anti-hyper nucleus in experiment
 - New opportunity for the study of matter-antimatter asymmetry \bullet

Antimatter/matter yield ratios are consistent with previous results and models.

Detector upgrade

High statistics in BES-II + wider η coverage than in year 2018

 \rightarrow Expect precision measurements and more information at large η

2022/6/7

