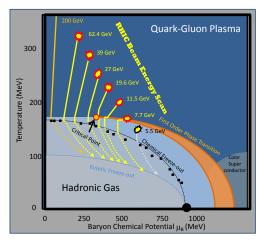
Probing Anisotropic and Radial Flow with Di-hadron Correlations in the BES

Liao Song for the STAR collaboration

University of Houston

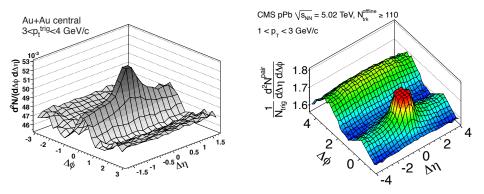
June 10th, 2015


Liao Song for the STAR collaboration

AGS/RHIC Users' Meeting 2015 1 / 16

About the BES program

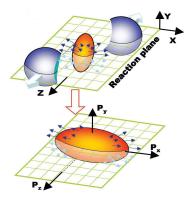
In 2010 and 2011 RHIC completed phase I of the BES program with data sets at 7.7, 11.5, 19.6, 27 and 39 GeV,and in 2014, 14.5 GeV. Goals of the BES program:

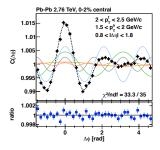

- Determine the energy at which key QGP signatures turn off.
- Search for the critical point.
- Search for the first order phase transition.

The QCD phase diagram

Di-hadron correlations from RHIC and LHC

Di-hadron correlations are a key observable in probing the collectivity of the system. How does the collectivity evolve in the BES?

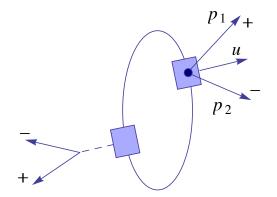



STAR ridge (Phys. Rev. C80 (2009) 064912)

p+Pb di-hadron correlations (Phys. Lett. B 718 (2013) 795)

Anisotropic flow

Long range correlations (i.e. the ridge) are dominated by the anisotropic flow. So the following analysis will mostly concentrate on long range correlations $(1 < |\Delta \eta| < 2)$ in an anisotropic flow study.


 $C(\Delta\phi)$ for particle pairs at $|\Delta\eta| > 0.8$.The Fourier harmonics for $V_{1\Delta}$ to $V_{5\Delta}$ are superimposed in color. (arXiv:1109.2501v1)

$$rac{dN}{d\Delta\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n^2 cos(n\Delta\phi)$$

4 / 16

Radial flow

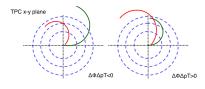
Short range correlations (i.e., the near-side peak) will be influenced by radial flow. Pairs produced via charge conservation will be narrowed by radial flow.

A schematic view of the charge balancing mechanism, producing pairs of particles with opposite charges. The rectangles indicate fluid elements moving outward with a collective velocity u. The dot indicates the space-time location of the emission of the pair of opposite-charge particles of momenta p_1 and p_2 . The dashed line represents a neutral resonance, decaying into a pair particles (Phys. Rev. Lett. 109, 062301 (2012))

Liao Song for the STAR collaboration

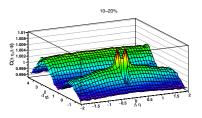
Data sets and event/track selections

Au+Au collisions	by center	^r of mass energy	$\sqrt{s_{NN}} = 7.7 \sim 39 { m GeV}$
------------------	-----------	-----------------------------	---

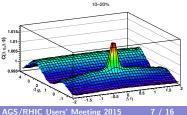

Energy (GeV)	pvz cut (cm)	Number of events
7.7	±70	4.7M
11.5	±50	12M
19.6	±40	21M
27	±40	38M
39	±40	117M

track cuts:

- ▶ $|\eta| < 1.0$
- ▶ 0.2 < p_T < 2GeV/c</p>
- number of TPC hits> 15
- fitted hits/Maximum possible hits > 0.52
- ► DCA < 2cm


Pair loss corrections for the correlation function

In STAR BES energies, track crossing is the dominant factor for pair loss.



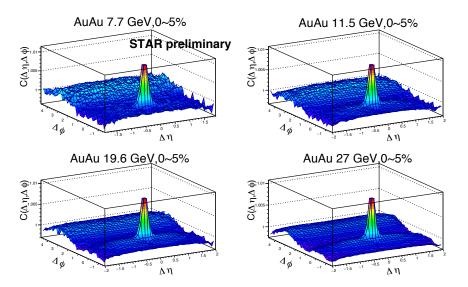
From Michael Daugherity's thesis

Take Au+Au $\sqrt{s_{NN}}$ =19.6 GeV as an example:

For example, in the positive B field ,the two tracks may cross if: $++:\Delta\phi\Delta p_T < 0$ $--:\Delta\phi\Delta p_T > 0$ $+-:\Delta\phi > 0$ $-+:\Delta\phi < 0$ reversely in negative B field.

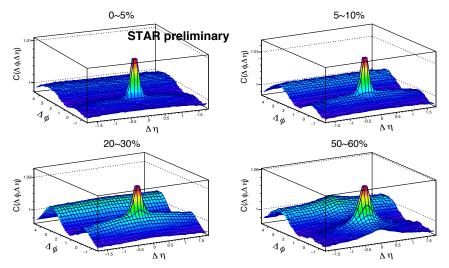
Correlation function

Mixed events are used to determine the uncorrelated yield and to correct for non-uniform acceptance.

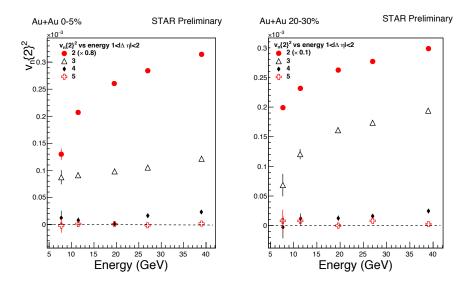

The correlation function we extract is:

$$C(\Delta \phi, \Delta \eta) = rac{N_{mixed}}{N_{same}} imes rac{N_{same}(\Delta \phi, \Delta \eta)}{N_{mixed}(\Delta \phi, \Delta \eta)}$$

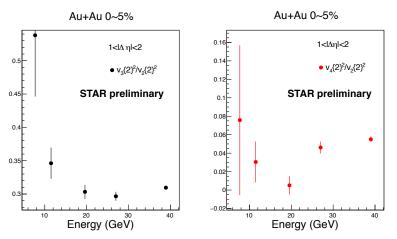
two-particle Fourier coefficients:


$$v_n\{2\}^2 = \sum_i C_i cos(n\Delta\phi_i) / \sum_i C_i$$

Di-hadron correlations in BES energies

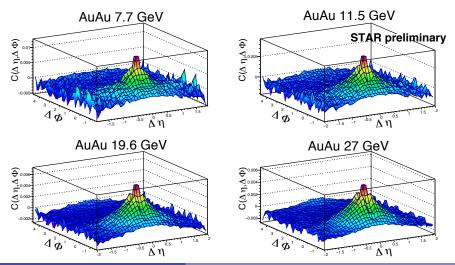


Centrality evolution of di-hadron correlations


Take AuAu $\sqrt{s_{NN}} = 19.6$ GeV as an example to illustrate the centrality evolution of the di-hadron correlations:

$v_n{2}^2$ vs energy

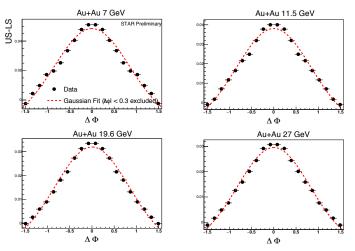
$v_n\{2\}^2/v_2\{2\}^2$ vs energy


As higher harmonics are damped more by finite viscosities, the ratios have an inverse relationship to viscosity. (D. Teaney, L. Yan, Phys. Rev. C 83 (2011) 064904, G. Y. Qin, H. Petersen, S. A. Bass, B. Muller, Phys. Rev. C82, 064903 (2010))

Liao Song for the STAR collaboration

12 / 16

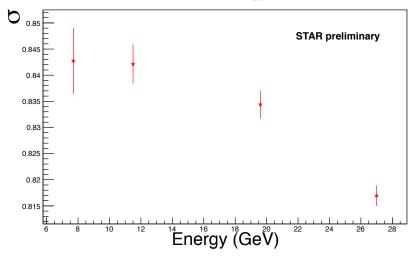
Charge-dependent correlations


By subtracting like-sign correlations from unlike-sign correlations (C(+-,-+) - C(++,--)), contributions from anisotropic flow are eliminated, isolating the radial flow.

AGS/RHIC Users' Meeting 2015 13 / 16

Liao Song for the STAR collaboration

Fit to the projection in $\Delta\phi$


We fit those data points with Gaussian functions $Ae^{-\frac{1}{2}(\frac{x}{\sigma})^2} + B$ in the $|\Delta \phi| > 0.3$ region excluding e^+e^- pairs.(B. Abelev et al (STAR Collaboration), arXiv:0806.0513)

Liao Song for the STAR collaboration

14 / 16

σ vs energy

 σ vs energy

 σ decreases with energy, which implies increasing radial flow.

Summary

- > Di-hadron correlations evolve with energy in the BES region.
- Ridge v_n coefficients generally increase with energy.
- ► US-LS near-side peak narrows with increasing energy.