

STAR Study of Uranium nuclei deformation via flow and mean transverse momentum correlation at STAR 26 RHIC

Supported in part by: U.S. DEPARTMENT OF

Chunjian Zhang (For the STAR Collaboration) Stony Brook University, chun-jian.zhang@stonybrook.edu

Motivations

Recent paper proposed to use v_n - p_T correlation to study nuclear deformation G. Giacalone, PRL124, 202301(2020)

For a deformed nucleus, the leading form of nuclear density becomes: $ho(r, heta) = rac{
ho_0}{1+e^{(r-R_0(1+eta_2 Y_{20}(heta))/a})}$

formation is quantified by quadrupole β_2 parameter

- A large uncertainty in the β_2 parameter of highly deformed ²³⁸U.
- $v_n\mbox{-} p_{\mbox{\scriptsize T}}$ correlation is a more direct way to study nuclear deformation comparing with EM transition.
- ¹⁹⁷Au with smaller deformation can be a good baseline.
- . gorgen, Tech. Rep. 051, 019(2015); Moller et al., 1508.06294; BNL nuclear data center

Observables

Performed using STAR TPC

- Large, Uniform Acceptance at Mid-rapidity Datasets: Run11 Au+Au@200GeV; Run12 U+U@193GeV
- Pearson coefficient: v_n-p_T three particle correlator $ho ig(v_n^2, [p_T]ig) =$ $\langle\langle p_{\mathrm{T}}
 angle)(p_{\mathrm{T},j} - \langle\langle p_{\mathrm{T}}
 angle))$ $\operatorname{Var}\left(v_{n}^{2}
 ight)_{\mathrm{dyn}}=v_{n}\{2\}^{4}-v_{n}\{4\}$ dynamical quantities with self-correlation removed 3-subeven Full event 2-subever $|v_2,p_T|\eta| < 1.0$ $v_2^A, \eta < -0.1$ $v_{2}^{B}, \eta > 0.2$ $|v_2^B,|\eta|< 0.3$ $v_{2}^{C}, \eta > 0.35$ $v_{0}^{A}, n < -0.35$

Results

- and $\langle p_T \rangle$ correlations are **positive and similar** for Au+Au and U+U collisions.
- After adding the statistical fluctuations, TRENTo can reproduce data quantitatively.

$\rho(v_n^2, [p_T])$ is not affected by non-flow

Subevent calculations indicate a decrease of non-flow contributions in peripheral collisions.

Summary

- We presented flow and mean transverse momentum correlation from STAR that demonstrate a clear shape-flow transmutation.
- Negative slope of v_2 vs $\langle p_T \rangle$ in U+U is due to the deformation.
- This is also confirmed by the sign-change of Pearson coefficient $\rho(v_{2, p_T}^2)$ in central U+U collisions while not in Au+Au collisions.
- Non-flow contribution is negligible based on the consistency between standard and subevent methods.
- Hydro within IP-Glasma initial configuration shows the hierarchical β_2 dependence in $\rho(v_{2,1}^2[p_T])$, and can reproduce $\rho(v_{2,1}^2[p_T])$ with quadrupole deformation $\beta_2=0.28$ for U+U collisions.
- These measurements provide novel ways to constrain guadrupole deformation β_2 in heavy-ion collisions.

$\rho(v_n^2, [p_T])$ is sensitive to β_2 in 0.2<p_T<2 GeV/c

- $\rho(v_2^2, [p_T])$ has a sign-change behavior in U+U central collisions
- $\rho(v_3^2, [p_T])$ is **positive** in both U+U and Au+Au collisions.
- IP-Glasma + Hydro shows the hierarchical β_2 dependence in $\rho(v_2^2, [p_T])$

Main features are robust against pr selection

TRENTo; G. Giacalone, PRC102, 104901(2020) IP-Glasma: Schenke, Shen, Tribedy, PRC102, 044905(2020)